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ABSTRACT 

The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implemen- 

tation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use soft- 

computing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, 

kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel 

functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O3), particulate matter 

(PM10) and nitrogen dioxide (NO2) at Mexico City are presented as a case study using these techniques. 
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1. Introduction 

In recent times, urban air pollution has been a growing 

problem especially for urban communities. Size, shape 

and chemical properties govern the lifetime of particles 

in the atmosphere and the site of deposition within the 

respiratory tract. Health effects differ upon the size of 

airborne particulates [1]. In this contribution, PM10 (par- 

ticles less or equal than 10 micrometers) and PM2.5 (par- 

ticles less or equal than 2.5 micrometers), Ozone and 

Nitrogen dioxide are considered due to its effect on hu- 

man health. This is the primary reason why this research 

has been done: to monitor, and model the levels and 

spread of harmful particles in urban environments. 

In previous contributions, it has been shown that fore- 

cast of concentration levels of PM10 may be possible by 

using other techniques such as neural networks and vari- 

ous fuzzy clustering algorithms [2]. However, there are 

other harmful particles such as Ozone and Nitrogen di- 

oxide, making it essential to accurately model the non- 

linear behavior of the system, by designing a more robust 

model with an enhanced method to reduce the error be- 

tween the raw data and the model. For this reason, sup- 

port vector machines (SVM) are chosen for this work. In 

this appraisal, the non-lineal behavior will be modeled 

using support vector machines working in regression 

mode. 

Support vector machines are a recent statistical learn- 

ing technique, based on machine learning and generalize- 

tion theories, it implies an idea and could be considered 

as a method to minimize the risk. 

A kernel approach is discussed, and the results for the 

forecast at Mexico City are illustrated. This is carried out 

using PM10 particles O3 and SO2. Finally, the results 

obtained by SVM kernel algorithms are validated using 

the raw data from the monitoring stations located at 

various sites in Mexico City. 

Mexico City is one of the largest urban areas in the 

world, with over 20 million inhabitants within the city 

and an annual growth rate of between 3.3% and 5%. Also, 

Mexico City has an area of approximately 1300 km2 and 

is naturally open to the north and enclosed by mountains, 

1000 m in height above the city, to the south, east and 

west. As most large cities located in valleys and sur- 

rounded by mountains, it has air pollution problems for 

certain particles. 

Mexico City is a dry region of moderate climate with a 

diurnal pattern of winds blowing from the northwest and 

the northeast. The rainy season lasts from June to Octo- 
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ber. The industrial area comprises more than 30% of the 

whole national industry and is mostly located in the 

northern sectors of the city. 

The high levels of fine particulate matter in Mexico 

City are of concern since they may induce severe public 

health effects [1]. 

2. Related Work 

In this section, a list of significant works on soft com- 

puting, machine learning and computational methods 

designed for urban airborne pollution forecasting are 

listed. Several of this works present a mixture of methods 

such as neural networks, support vector machines and 

fuzzy inference systems, with other techniques. 

For instance, Kolehmainen [3] has constructed a 

model using Self-Organized Map (SOM), Sammon’s 

mapping and fuzzy distance metrics to forecast levels of 

NO2, CO and PMx, while works such as the one carried 

out by Pokrovsky [4] shows a fuzzy logic based method 

to study the impact of meteorological factors on the evo- 

lution of air pollutant levels in order to describe them 

quantitatively. 

Furthermore, some authors have focused their efforts 

on forecasting levels of airborne pollutants using various 

methods of artificial neural networks (ANN) [5-8]. 

In general, soft computing models were carried out 

using a mixture of two models such as: Box-Jenkins me- 

thods and ANN [9], Hidden Markov Model with Fuzzy 

Logic [10]. 

In previous contributions, urban air pollution models 

have been carried out using different fuzzy clustering 

techniques and fuzzy inference systems on particulate 

matter of less than 10 µm in diameter (PM10) [2]. 

Lastly, in terms of forecasting airborne pollution using 

support vector machines the work of Osowski [11] can 

be mentioned. In this work, the authors present a method 

for daily air pollution forecasting by using SVMs and 

wavelet decomposition. However, in such work only 

Gaussian kernel is shown. 

In this contribution, support vector machines are used 

to construct models to forecast pollution levels using 

dissimilar particles, to determine performance for the 

kernels used (Gaussian, Polynomial and Spline). 

3. Background 

3.1. Urban Airborne Pollution 

The health impact of air pollution became apparent dur-

ing episodes in the USA and Europe in 1952 and 1958. 

Subsequent analysis of date for the London winters of 

1958-1971 demonstrated that mortality and morbidity 

were associated with air pollution. The ability to measure 

the environmental health effects of pollution has im- 

proved over the last several decades, owing to advances 

in pollution monitoring and in statistical techniques 

[12]. 

The sources of air pollutants are numerous and varied. 

Three categories of sources may be defined: 1) natural 

(those that are not associated with human activities); 2) 

anthropogenic (those produced by human activities); and 

3) secondary (those formed in the atmosphere from 

natural and anthropogenic air pollutants) [13]. 

Most major pollutants can alter pulmonary function in 

addition to other health effects when the exposure con- 

centrations are high. This is especially severe in vulner- 

able sectors of the population such as children asthmatic 

and the elderly and has been vastly documented [14-17]. 

In this work, five particles were chosen due to the 

site’s availability and toxicity: Ozone, Nitrogen Diox- 

ide (NO2) and Particulate Matter of less than 10 mi- 

crometers in diameter (PM10). The datasets are sepa- 

rated according to month of the year and type of parti- 

cle. There is one data for each hour, for each particle for 

all five sites, making it difficult to extract information 

from datasets using commonly used methods, hence the 

importance to use novel methods for data extraction and 

analysis such as the one used in this work, especially 

when dealing with the non-linear behavior of airborne 

particle concentration. 

3.1.1. Ozone 

Ozone is a natural atmosphere component that is found 

on low concentrations and is crucial for life. Air pollu- 

tion caused by high concentration of ozone is a com- 

mon problem in large cities throughout the world [18]. 

Mexico City is among the ones suffering from this 

problem. It is a well-known fact that individuals exposed 

for a long period of time to high concentration of ozone 

may experience serious health problems [19]. Epidemi- 

ology studies have found associations between daily 

ozone levels and the hospital admission [20]. This pol- 

lutant is associated with respiratory symptoms specially 

coughing. This is aggravated in patients with asthma 

[21]. 

3.1.2. Nitrogen Dioxide 

Nitrogen Dioxide (NO2) is a particularly important com- 

pound, not only for its health effects, but also because 

absorbs visible light and contributes to the visibility de- 

crease. It also plays a critical role in production of ozone 

because the photolysis of NO2 is the initial step in the 

photochemical reaction of the ozone [13,18]. 

In nature, there is a nitrogen dioxide concentration of 

10 to 50 parts per billion (ppb). However, the high lev- 

els of nitrogen dioxide are due to industrial processes and 

fossil sources. Furthermore, motor vehicles substantially 

contribute to urban levels of nitrogen oxides through 
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their engine combustion processes [22]. According to 

several authors, the monitoring of NO2 is critically im- 

portant, in order to assess the potential effect of NO2 on 

human health and ecosystems, as well as developing 

strategies for the effective control of NO2 pollution [23- 

25]. 

3.1.3. PM10 

The airborne particulate matter (PM) is a mixture of 

small particles and liquid droplets suspended in the at- 

mosphere, which contributes significantly to the urban air 

quality such as acid rain and visibility degradation [26]. 

In airborne pollution, these particles could be any solid 

or liquid materials with a diameter between 0.002 and 

500 micrometers (µm). Airborne particulates of 10 m 

diameter and less are of concern from the perspective of 

air pollution [27]. A variety of national and worldwide 

standards, directives and guidelines exist to define ac- 

ceptable particulate levels in the air. These types of par- 

ticles are classified according to their effect on human 

health and their physical characteristics [28,29]. 

3.2. Support Vector Machines 

The support vector machines (SVM) theory was devel- 

oped by Vapnik [30]. This method is applied in many 

machine-learning applications such as object classifica- 

tion, time series prediction, regression analysis and pat- 

tern recognition. Support vector machines (SVM) are 

based on the principle of structured risk minimization 

(SRM) [31,32]. 

In the analysis using SVM, the main idea is to map the 

original data x into a feature space F with higher dimen- 

sionality via non-linear mapping function , as shown in

Figure 1, which is generally unknown, and then carry on 

linear regression in the feature space [33,34]. 

Thus, the regression approximation addresses a prob-

lem of estimating function based on a given data set 

(where xi represent the input vectors, di are the desired 

values), which is produced from the  function. SVM 

method approximates the function by: 

1

m

i i
i

y w x b w x b            (1) 

where w = [w1, ,wm] represent the weights vector, b are 

the bias coefficients and (x) = [ 1(x), , m(x)] the basis 

function vector. 

The learning task is transformed to the weights of the 

network at minimum. The error function is defined 

through the -insensitive loss function, L (d,y(x)) and is 

given by: 

,
0 others

d y x d y x
L d y x      (2) 

(a) 

(b) 

Figure 1. Feature map can simplify the classification and 

regression tasks. (a) Input space; (b) Feature space. 

 

The solution of the so defined optimization problem is 

solved by the introduction of the Lagrange multipliers 

,i i  (where 1,2, ,i k ) responsible for the func- 

tional constraints defined in Equation (2). The minimize- 

tion of the Lagrange function has been changed to the 

dual problem [35] 

1 1

1 1

,

1
, , ,

2

k k

i i i i i
i i

k k

i i j j i j
i j

d

K x x

  (3) 

With constraints: 

1

, 0, 0 ,0
k

i i i i
i

C C         (4) 

where C is a regularized constant that determines the 

trade-off between the training risk and the model uni- 

formity. 

According to the nature of quadratic programming, 

only those data corresponding to non-zero i i

pairs can be referred to support vectors. In Equation 3 

,i j i jK x x x x  is the inner product kernel 
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which satisfies Mercer’s condition [13] that is required 

for the generation of kernel functions given by: 

ing a principled method for model selection [31,35]. 

A polynomial mapping is a widely used method for 

non-linear modeling [35], defined by: 
, ,i j i jK x x x x           (5) 

, ,
d

i j i jK x x x x                 (8) 

Thus, the support vectors associates with the desired 

outputs y(x) and with the input training data x can be de- 

fined by: 

Unless the used of equation 8 implies an inherit prob- 

lem, some support vector machines become zeros, there-

fore is preferable to rewrite the expression as: 

1

, ,
Nsv

i i i
i

y x K x , ,
d

i j i jK x x x xx b           (6) 1               (9) 

In this survey, a Spline kernel is presented as a choice 

for modeling due to their flexibility. A spline, of order 

with N knots located at s is expressed by: 

where xi are learning vectors. This leads to a SVM archi- 

tecture (Figure 2) and are also founded in [2]. 

3.2.1. Kernel Functions 

0 1

,
k kr r

i j i j i s i s
r s

K x x x x x x    (10) The use of an appropriate kernel is the key feature in 

support vector applications, since it provides the capabil- 

ity of mapping non-linear data into “feature” spaces that 

in essence are linear, then an optimization process can be 

applied as in the linear case. This provides a means to 

dimension the problem properly; nonetheless, the results 

still depend on the good selection of a set of training 

datasets. 

If k = 1 and the Spline function is defined as: 

3

1
, 1 , , min ,

2

1
, min ,

6

i j i j i j i j

i j i j

K x x x x x x x x

x x x x

   (11) 

where the solution is a piecewise cubic. The Gaussian kernel function is defined in [11,30] 

Equation (7). 
3.2.2. Other Considerations 2

2
, exp

2

i j

i j

x x
K x x

There are other considerations when working with SVMs 

on regression mode. The most important are: Bias 

Analysis, Free parameters and the quadratic problem. 

These issues will be discussed in this section. 

            (7) 

The Gaussian kernel process delivers an estimate for 

the reliability of the prediction in the form of the vari- 

ance of the predictive distribution and the analysis can be 

used to estimate the evidence in favor of a particular 

choice of covariance function. The covariance or kernel 

function can be seen as a model of the data, thus provid-  

The inclusion of a bias within the kernel function gen- 

erally leads to a more efficient implementation and a 

slightly better accuracy model [11]. Conversely the solu- 

tions achieved with an implicit or explicit bias are not the 

same. This dichotomy emphasizes the difficulties whit 
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Figure 2. Support vector machine architecture. 
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the interpretation of generalization in high dimensional 

feature spaces. In this work the explicit bias approach is 

used. 

Other important issue in support vector applications is 

the selection of free parameters such as the coefficient of 

C (regularization constant) and the value of error . The 

regularization constant is the weight, determining the 

balance between the complexity of the network, while  

is the margin within the error is neglected and in the 

Gaussian kernel function the value of variances  [11]. In 

previous contributions [35], it was found the optimum 

regularization coefficient to be 100 and the error  of 0.5. 

In terms of the quadratic programming (QP), it be- 

comes a problem when the number of data points ex- 

ceeds a certain quantity (e.g. 2000). For SVM training 

with small data points works flawlessly [32,36]. 

In the study case of this survey, the number of data 

points is 365, where each data point represents the daily 

average of PMx concentration. Therefore the analysis 

and solving of the QP problem is not considered in the 

scope of this survey. 

4. Proposed Methodology 

The proposed Methodology has been taken from Lu [36] 

and Wang [37]. This methodology provides the general 

steps to make pollutants modeling and predictions by 

using SVM working in regression mode. In this survey 

Gaussian, Polynomial and Spline kernel functions are 

used. The aim of this work is to provide a natural repre- 

sentation of the system behavior, comparing the per- 

formance of the kernels used for this particular case 

study. In order to perform an appropriate design, training, 

and testing of SVM this article describes a generic 

methodology based on a review of [30,32], as shown in 

Figure 3. 

The steps taken based on the methodology shown in 

Figure 1 are as follows: 

Preprocessing of the input data by selecting the most 

relevant features, scaling the data in the range [ 1, 1], 

and checking for possible outliers. 

Selecting an appropriate kernel function that deter- 

mines the hypothesis space of the decision and regression 

function. 

Selecting the parameters of the kernel function, in 

polynomial kernels the degree for polynomials and the 

variances of the Gaussian kernels respectively. 

Choosing the penalty factor C and the desired accu- 

racy by defining the -insensitive loss function. 

Validating the model obtained on some previously, 

during the training, unseen test data, and if not pleased 

iterate between steps “c” or, eventually “d”. 

The fundamental reason for considering SVM working 

in regression mode as an approach for urban air pollution  

Data 

Normalization 

Kernel Function 

Selection 

Kernel Parameter

Selection 

Model evaluation 

& 

Error calculation 

Free Parameter 

Selection 

Gaussian Spline 

Model trainning 

Polynomial

 

Figure 3. Proposed methodology. 

 

modeling is the non-linear aspect of the application. 

There is no predetermined heuristic for the choice of free 

parameters and design for the SVM, many applications 

appear to be specific, in order to improve the SVM per- 

formance through the automatic adjustment of free pa- 

rameters. Using SVM on real time applications appears 

to be rather complex due to the computational demands 

of the deriving results. 

5. Experimental Results 

Table 1 shows the forecasting results of Ozone consid- 

ering all three kernels discussed in Section 3.2.1 for 

every month of the year. Here is shown the number of 

SVM used con construct the model for the specific kernel 

of the giving month. The bigger the number of SVM 

used, the bigger the computational cost to compute the 

model. Hence, the wanted accuracy (ratio of number of 

predicted and unpredicted points) has to be as high as 

possible keeping a small number of SVMs. 

In this table, is shown that the number of support vec- 

tor machines for the Gaussian kernel varies from 4 (Feb- 

ruary 2009) to 10 (December 2009). Although the accu- 

racy is high for most predictions, it is worth noticing that 

both November and December has an accuracy far below 
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the average (83.3% and 83.8, respectively) and the num- 

ber of SVMs is also much higher than most of the other 

months, with the only exception for this for July. The 

best models with this kernel could be seen for February 

and June, where the accuracy is high (89.2% and 90%, 

respectively) maintaining a low computational cost with 

only 4 SVMs. 

In terms of the polynomial kernel, the mode of number 

of kernels is between 5 and 6, with a lowest accuracy of 

74.2% and the highest of 90.3 for some months. It is 

worth noting that it has a low accuracy (less than 80%) 

for the last three months of the year, a similar perform- 

ance than the Gaussian kernel where the last months 

show a lower accuracy than the rest of the months. Fur- 

thermore, for the spline kernel, a low number of SMVs 

were needed to model Ozone and the accuracy varied 

from 67.7% (in December) to 93.5% (in March). In gen- 

eral, the lowest accuracy was shown for the last months 

of the year (especially December) for all three kernels. 

The kernel that shows a better steadiness was Gaussian 

for this particle, although for some months the number of 

SVMs was higher with its substantial increase of the 

computational cost. An example of a SVM forecasting 

for ozone using Gaussian kernel is shown in Figure 4. 

Table 1. Forecasting results ozone. 

Gaussian kernel Polynomial kernel Spline kernel 
Samples 2009 O3 

No. of SVM Acc No. of SVM Acc No. of SVM Acc 

Jan 7 93% 5 86.6% 4 87.1% 

Feb 4 89.2% 4 85.7% 3 85.7% 

March 8 93.5% 6 90.3% 5 93.5 

April 7 86.6% 5 90% 5 90% 

May 8 90.3% 6 90.3% 5 87.1% 

June 4 90% 4 86.6% 3 86.6% 

July 9 90.3% 6 87.1% 5 90.3% 

Aug 7 87% 5 90% 5 90.3% 

Sep 8 90% 7 90.3% 8 90% 

Oct 7 93.5% 4 77.4% 4 83.8% 

Nov 9 83.3% 8 76.6% 5 80% 

Dec 10 83.8% 7 74.2% 6 67.7% 

 

 

Figure 4. Forecasting of O3 concentration in January of 2009 using Gaussian kernel. 
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In Table 2 is shown the forecasting results for Nitro- 

gen Dioxide for all three kernels. In this table, is shown 

that for this particle the highest accuracy is also for 

Gaussian kernel, which replicates the results for ozone. 

In general, the spline kernel shows the lowest number of 

SVMs to represent the model, but also the lowest accu- 

racy in terms of percentage. An example of this behavior 

may be seen in Figure 5. Also, it can be noted that re- 

gardless of the kernel, the lowest accuracy for that spe- 

cific kernel is located in the last months of the year (es- 

pecially for December). This is also consistent with the 

forecasting results for ozone (Table 3). 

In terms of the forecasting results for PM10, it can be 

noted that the Gaussian kernel works better in terms of 

accuracy in spite of the high number of SVMs to con- 

struct the model. Both spline and polynomial kernels 

work relatively accurate with a lower number of SVMs, 

with a few exceptions (e.g. Spline Kernel for April gives 

10 SVMs with only 67.7% accuracy). An example of this 

behavior for spline kernel is shown in Figure 6. 

 
Table 2. Forecasting results nitrogen dioxide. 

Gaussian kernel Polynomial kernel Spline kernel 
Samples 2009 NO2 

No. of SVM Acc No. of SVM Acc No. of SVM Acc 

Jan 9 87.1% 7 83.8% 4 77.4% 

Feb 7 89.3% 6 85.7% 3 85.% 

March 6 87.1% 8 83.8% 5 77.4% 

April 7 86.6% 6 80% 5 76.6% 

May 8 80.6% 6 77.4% 5 70.9 

June 5 90% 7 80% 3 77.6% 

July 9 87.1% 8 87.1% 5 83.8% 

Aug 7 80% 6 77.4% 5 80% 

Sep 9 83.3% 8 80% 8 86.6% 

Oct 6 90.3% 5 83.8% 4 77.4% 

Nov 10 86.6% 8 80% 5 83.3% 

Dec 9 83.8% 6 77.4% 6 70.9% 

 

 

Figure 5. Forecasting of O3 concentration in January of 2009 using Polynomial kernel. 
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Table 3. Forecasting results PM10. 

Gaussian kernel Polynomial kernel Spline kernel 
Samples 2009 PM10. 

No. of SVM Acc No. of SVM Acc No. of SVM Acc 

Jan 8 80.6% 10 74.2% 8 77.4% 

Feb 8 85.7% 9 78% 9 80% 

March 5 83.8% 8 77.4% 7 83.8% 

April 7 80% 7 73.3% 9 76.6% 

May 9 87.1% 9 77.4% 10 67.7% 

June 6 86.6% 9 80% 7 76.6% 

July 7 80.6% 8 87% 6 80.6% 

Aug 8 77.4% 7 77.4% 8 80.6% 

Sep 10 83.3% 9 80% 8 86.6% 

Oct 11 83.8% 7 83.8% 8 77.4% 

Nov 11 80% 6 80% 6 83.3% 

Dec 8 80.6% 8 77.4% 7 74.2% 

 

 

Figure 6. Forecasting of O3 concentration in January of 2009 using Spline kernel. 

 

6. Conclusions and Future Work 

This method presents a feasible modeling technique of 

the monthly atmospheric pollution by applying the sup- 

port vector machine with Gaussian, Polynomial and 

Spline kernels functions working in regression mode. 

The application of SVM has enabled to obtain a good 

accuracy in modeling pollutant concentration of O3, NO2 

and PM10 in Mexico City. The methods, techniques and 

alternatives offered in the SVM field provide a flexible 

and scalable tool for implementing sophisticated solu- 

tions with implied dynamical and non-linear data. It is  

noteworthy to point that the SVM guarantees this global 

minimum solution and a good feature of generalization. 

Factors such as bias and free parameters were consid- 

ered to construct the models. However, looking at the 

results, a trade-off must be made between computational 

cost in terms of number of support vector machines and 

accuracy. Looking at the results, it can be inferred that 

Gaussian kernel works better providing that the time to 

compute the results is not an issue. In general, Polyno- 

mial kernel does not offer an adequate performance in 

comparison with Gaussian for this particular case study. 
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As future work, implementing other kernel functions 

such as genetic, wavelet-based, principal component ana- 

lysis (PCA), among others, may be considered for future 

contributions. Also a real-time prediction may be carried 

out using sensor networks and embedded systems. 
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