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ABSTRACT 

The use of Recurrence plots have been extensively used in various fields. In this work, Recurrence Plots (RPs) investigates 

the changes in the non-linear behaviour of urban air pollution using large datasets of raw data (hourly). This analysis 

has not been used before to extract information from large datasets for this type non-linear problem. Two different 

approaches have been used to tackle this problem. The first approach is to show results according to monitoring network. 

The second approach is to show the results by particle type. This analysis shows the feasibility of using Recurrence 

Analysis for pollution monitoring and control. 
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1. Introduction 

The states in nature typically change in time. The impor- 

tance in the investigation of these changes in complex 

systems helps to understand and describe such changes. 

A relatively new method based on non-linear data ana- 

lysis has become popular to describe the changes of 

these systems. This method is called recurrence plot [1, 

2].  

In this contribution, the non-linear behaviour of urban 

air pollution is quantified and analysed at various sites at 

Mexico City, using large datasets over a number of years. 

This is carried out to show the feasibility of analysing 

key features embedded in the raw datasets. 

2. Background 

2.1. Urban Airborne Pollution  

In recent times, urban air pollution has been a growing 

problem especially for urban communities. Size, shape 

and chemical properties govern the lifetime of particles 

in the atmosphere and the site of deposition within the 

respiratory tract. Also, air pollution has been held re- 

sponsible for various health disorders, especially respi- 

ratory complications resulting in an increase in the num- 

ber of asthmatic cases and hospital admissions in some 

parts of the world and has been widely documented 

[3-5].  

Most major pollutants can alter pulmonary function 

in addition to other health effects when the exposure 

concentrations are high. This is especially severe in 

vulnerable sectors of the population such as children 

asthmatic and the elderly and has been vastly documented 

[6-9]  

In this work, five particles were chosen due to the 

site’s availability and toxicity: Ozone (O3), Carbon Mo- 

noxide (CO), Nitrogen Dioxide (NO2), Sulphur Dioxide 

(SO2) and Particulate Matter of less than 10 micrometers 

(PM10). The datasets are separated according to month 

of the year and type of particle. There is one data for 

each hour, for each particle for all five sites, making it 

difficult to extract information from datasets using com-

mon methods. 

2.1.1. Ozone 

Ozone is a natural atmosphere component that is found 

on low concentrations and is crucial for life. Air pollu- 

tion caused by high concentration of ozone is a common 

problem in large cities throughout the world [10]. Mex- 

ico City is among the ones suffering from this problem. It 

is a well-known fact that individuals exposed for a long 

period of time to high concentration of ozone may ex- 

perience serious health problems [11,12]. Epidemiology 
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studies have found associations between daily ozone lev- 

els and the hospital admission [13]. This pollutant is as- 

sociated with respiratory symptoms specially coughing. 

This is aggravated in patients with asthma [14].  

In Mexico City, there is a decreasing of ozone espe- 

cially from 2009. However, there is still a risk situation 

for overexposure mainly in the southwest region [15], 

according to the official Mexican air quality standards 

[16].  

2.1.2. Carbon Monoxide 

Carbon monoxide (CO) is a tasteless, odorless gaseous 

pollutant ubiquitous in the outdoor atmosphere that is 

generated by combustion [17]. CO is produced by in- 

complete combustion of hydrocarbons. Its main source is 

vehicle exhaust emissions; secondary important sources 

are industry, heating, and fires. The concentrations of CO 

as well as their fluctuations are related to a large extent to 

the circulation of cars [18].  

Adverse health effects of CO exposure include death 

from asphyxiation at high exposure levels and, at lower 

levels, impaired neuropsychological performance and 

risk for myocardial ischemia and rhythm disturbances in 

persons with cardiovascular disease. The most definitive 

evidence on CO comes largely from controlled exposure 

studies, involving CO inhalation at concentrations to mimic 

exposures previously typical of urban environments [19, 

20]. 

Also, Carbon monoxide has been held responsible for 

many hospital admissions due to carbon monoxide poi- 

soning. Only in the US, around 40,000 people are admit-

ted in hospitals for this cause in one year [21].  

In Mexico, the Official Norm NOM-021-SSA1-1993 

sets the maximum level for carbon monoxide on 11.0 

parts per million (ppm) for an average of 8 hours, which 

cannot be exceeded more than once a year. Compara- 

tively, in the United States the federal standard is 9 ppm 

for 8 hours and 35 ppm for 1 hour average. 

2.1.3. Nitrogen Dioxide 

Nitrogen Dioxide (NO2) is a particularly important com- 

pound, not only for its health effects, but also because 

absorbs visible light and contributes to the visibility de- 

crease. It also plays a critical role in production of ozone 

due to the photolysis of NO2 is the initial step in the 

photochemical reaction of the ozone [10]. 

In nature, there is a nitrogen dioxide concentration of 

10 to 50 parts per billion (ppb). However, the high levels 

of nitrogen dioxide are due to industrial processes and 

fossil sources. Furthermore, motor vehicles substantially 

contribute to urban levels of nitrogen oxides through 

their engine combustion processes [22]. According to 

several authors the monitoring of NO2 is critically im- 

portant, in order to assess the potential effect of NO2 on 

human health and ecosystems, as well as developing 

strategies for the effective control of NO2 pollution 

[23-25]. 

In Mexico, the official norm: NOM-023-SSA1-1993 

[16] establishes a maximum allowed concentration of 

0.21 ppm hourly mean, which cannot be exceeded more 

than once a year. Comparatively, in the United States of 

America, the federal standard establishes a value of 

0.053 ppm annual mean. The WHO recommends a value 

of 40 µg/m3 (0.021 ppm) for annual mean and 200 µg/m3 

(0.106 ppm) for hourly mean. 

2.1.4. Sulphur Dioxide 

Sulphur Dioxide gases contribute to the deterioration of 

air quality. Several epidemiological studies have demon- 

strated a direct association between atmospheric inhal- 

able Sulphur dioxide and respiratory diseases, pulmonary 

damage and mortality among population [8]. In urban 

environments, Sulphur dioxide is generated by many 

sources. One of them is the burning of solid compounds 

or petroleum-derived products. 

In the past three decades in Europe, and more recently 

in the United States, there have been substantial reduce- 

tions in SO2 emissions [26,27]. 

The World Health Organization recommends a con- 

centration of between 100 to 150 µg/m3 24 hours mean 

and 40 to 60 µg/m3 the annual mean. The official Mexi- 

can Norm: NOM-022-SSA1-1993 establishes a limit of 

341 µg/m3 24-hour mean once a year and 79 µg/m3 an- 

nual mean to protect vulnerable population. 

2.1.5. PM10

The airborne particulate matter (PM) is a mixture of 

small particles and liquid droplets suspended in the at- 

mosphere, which contributes significantly to the urban 

air quality such as acid rain and visibility degradation 

[28]. 

In airborne pollution particle could be any olid or li- 

quid materials with a diameter between 0.002 and 500 

micrometers (µm). Airborne particulates of 10 m dia- 

meter and less are of concern from the perspective of air 

pollution. A variety of national and worldwide standards, 

directives and guidelines exist to define acceptable par- 

ticulate levels in the air. 

These types of particles are classified according to 

their effect on human health and their Physical charac- 

teristics. 

2.2. Mexico’s Sites 

Mexico City is geographically located in the Valley of 

Mexico. This valley, also known as the Valley of the 
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Damned is a large valley in the high plateaus at the cen- 

ter of Mexico. It has an altitude of 2240 meters (7349 

feet). The Federal District of Mexico City is situated in 

central-south Mexico and it is surrounded by the state of 

Mexico on the west, north and east, and by the state of 

Morelos on the south. The city covers an area of around 

1485 km2 (571 sq mi) with the elevation of 2240 m (7349 

ft).  

The sites used in this work are as follows: Northeast 

(San Agustín-SAG), Northwest (Acatlán-FAC), Down- 

town (Merced-MER), Southeast (Iztapalapa-UIZ) and 

Southwest (Pedregal-PED). The map of the monitoring 

sites is shown on Figure 1. 

3. Recurrence Plots 

The recurrence plot (RP) exhibits characteristic patterns 

for typical dynamical behavior. A collection of single 

recurrence points, homogeneously and irregularly dis- 

tributed over the whole plot, reveals a mainly stochastic 

process [29].  

Recurrence Plot is a graphical tool introduced by Eck- 

mann (1987) in order to extract qualitative characteristics 

of a time series. The recurrence of a state i at a different 

time j is pictured within a two-dimensional squared ma- 

trix with black and white dots, where the black dots rep- 

resent a recurrence and both axes represent time [30,31].  

Such RP can be mathematically expressed as: 

,

, , , 1 ,im m

i j i i j iR i j N  (1) 

where, N is the number of considered states xi; i  is a 

threshold distance, i j  norm and  the 

 

 

Figure 1. Map for the monitoring sites at Mexico City. 

Heaviside function [32]. 

Since , 1 1i iR i N  by definition, the RP has a 

black main diagonal line called line of identity (LOI). In 

this context, the Heaviside function  is a recur- 

rence of a state i  that is sufficiently close to i  

(states i  that fall into an m-dimensional neighbor- 

hood) [33]. 

Using the time series of a single observable variable 

(particles, in this case), it is possible to reconstruct a 

phase space trajectory. Starting from the scalar time se- 

ries 
1t t

X
T

 a sequence of embedded vectors  

i ix x 2i i m 1
, , ,y i x x  is generated [34]. The 

set of all embedded vectors , 1, , 1T my i i , 

constitutes a trajectory in  where m is the embed- 

ding dimension and  is the time delay. Each unknown 

point of the phase space at time I is reconstructed by the 

delayed vector 

m

y i  in an m-dimensional space called 

the reconstructed phase space. 

Determining the embedding parameters must be the 

first step for analysing nonlinear systems [29,34-37]. For 

this reason, a search for the best dimension and time de- 

lay must be made first. In this contribution, the best di- 

mension value is calculated using the algorithm of false 

nearest neighbors (FNN) as shown on [32,38].  

Also, when calculating an RP a norm must be chosen 

[39]. The most widely used norms are the L1, L2 

(Euclidean norm) and L  [30]. In this work, the Euclid- 

ean norm was used. Figure 2 shows the recurrence plots 

of a random signal, a sine wave and two RPs chosen 

randomly for airborne particle concentration. 

Although it is possible to identify each plot from Fig-

ures 2(c) and (d), some experience is needed to interpret 

the RPs [40]. For this reason, recurrence quantification 

analysis (RQA) offers a window to characterize such RP 

structures.  

The main idea of this project is to reconstruct the (un- 

known) system dynamics in the phase space by using 

time-delay embedding, and then computing the distances 

between all pairs of embedded vectors, generating a 

symmetric two-dimensional square matrix for each data- 

set as shown on Figures 1(c) and (d), applying RQA to 

each dataset.  

3.1. Recurrence Quantification Analysis (RQA)  
for RPs  

Zbilut [40] have developed some of the methods used 

today for Quantitative Analysis of the recurrence plots. It 

has been shown that these measures are able to capture 

dynamical transitions in complex systems [38], defining 

measures of complexity using certain characteristics of 

the recurrence plots [41,42].  

In general, the characteristics measured in a RP are:     
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(a)                                                   (b) 

 
(c)                                                   (d) 

Figure 2. Recurrence plots using (a) A random signal; (b) A sine wave; (c) Particle concentration of carbon monoxide at 

Mexico Downtown for 2009 and (d) Particle concentration of PM10 over 2010 at Mexico North East (daily mean) showing the 

line of identity (diagonal line). 

 

recurrence rate, determinism, ratio, entropy and trend. In 

this contribution, an extension of these characteristics 

was also considered such as Laminarity and Trapping 

time. 

3.2. Recurrence Rate 

The recurrence rate is a measure of recurrences, or den- 

sity of recurrence points in the RP. This rate gives the 

mean probability of recurrences in the system [41,43]. 

The recurrence rate is given by:  

,2 , 1

1
RR

N

i ji j
R

N
           (2) 

in the case of time series, and; 

1 2 1 21 2 1, 2
, , ,4 , ,

1
RR

N

i i j ji i j j
R

N
       (3) 

in the case of spatial data [44].  

The recurrence rate represents the fraction of recurrent 
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points with respect to the total number of possible recur- 

rences. It is a density measure of the RP. 

3.3. Determinism 

Determinism is a measure for predictability of the system 

[37]. The determinism could also be explained as the 

percentage of recurrent points forming line segments 

which parallel the Line of Identity (LOI). The determi- 

nism characteristic is given by Gao [36]: 

min

,

,,

DET
l l

N m

i ji j
R

N
lP l

               (4)

where P(l) denotes the probability of finding a diagonal 

line of length l in the RP. This measure quantifies the 

predictability of a system [38]. The measure of deter- 

minism (DET) ranges from 0 to 1. Numbers near zero 

indicate randomness while those approaching one indi- 

cate the presence of a strong signal component [32,35]. 

The average diagonal line length Lmean is defined as: 

min

min

mean

l l

N

l l

lP
L

P l

N
l

              (5) 

This characterizes the average time that two segments 

of a trajectory stay in the vicinity of each other, and is 

related to the mean predictability time [38]. 

The choice of l min can also be used in order to ex- 

clude short temporal scales that are not important [39].  

3.4. Ratio 

The Ratio variable is defined as the quotient of deter- 

minism (DET) divided by the recurrence (REC). It is 

useful to detect transitions between states: this ratio in- 

creases during transitions but settles down when a new 

quasi-steady state is achieved [39]. 

3.5. Entropy 

The measure characteristic entropy refers to the Shannon 

entropy of the frequency distribution of the diagonal line 

lengths [45]. According to several authors, the basic idea 

is that information (Shannon) entropy of the random 

processes is abundantly supplied with the qualitative and 

quantitative data on the object under research [39,42, 

43,45]. The entropy of a system is given by: 

min

min

ENT log with
N

Nl l

l l

p l
p l p l p l

P l
 

(6) 

3.6. Trend 

The trend is a linear regression coefficient over the re- 

currence point density of the diagonals parallel to the 

Line of Identity (LOI). The trend measurement is given by: 

1 2
TREND

N

i ii

N
i RR RR

2

1 2

N

i

N
i

        (7) 

3.6. Laminarity 

Laminarity may be defined as the amount of recurrence 

points which form vertical lines [34]. Thus, laminarity 

(LAM) can be quantified as expressed on Equation (8) 

min

1

LAM
v v

N

v
v P v

N
v P v

             (8) 

where P(v) is the frequency distribution of the lengths v 

of the vertical lines, which have at least a length of v min. 

It is noteworthy that Laminarity is evidence of chaotic 

transitions and is related with the amount of laminar 

phases in the system (intermittency) [34]. 

3.7. Trapping Time 

Trapping Time shows the average length of the vertical 

lines and is given by Equation (9): 

min

min

TT
v v

N

v v
P v

N
vP v

               (9) 

where v is the length of the vertical lines, v min is the 

shortest length that is considered a line segment and P(v) 

is the distribution of the corresponding lengths. TT 

shows the time that the systems have been trapped in the 

same state [39].  

4. Experimental Results 

Recurrence Quantification Analysis have been carried 

out for years 2005-2010 for all sites mentioned in section 

2.2 for particles PM10, CO, SO2, NO2 and O3 using the 

raw data (hourly) obtained from the monitoring stations. 

The analysis has been carried out for recurrence rate 

(REC), determinism (DET), Ratio, Trapping Time (TT), 

Laminarity (LAM) and Trend.  

The results were analysed separately and presented in 

form of boxplots according to two different approaches: 

by site and by type of particle. This analysis is complex 

due to the large quantity of the datasets. However, much 

useful information have been extracted from the recur- 

rence plots using RQA.  

4.1. Results by Monitoring Networks (Sites) 

This approach explores the feasibility of using RQA to 
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tiles reaching up to 5. This could also be due to the type 

of particle rather than the site. This is shown on Figure 

6. 

extract information from the Recurrence Plots by sites. 

As explained in Section 2.2, the monitoring networks 

were separated as: Northwest, Northeast, Downtown, 

Southwest and Southeast. This approach does not take 

into account the type of particle, but rather the location of 

the monitoring network. Figure 3 shows the recurrence 

rate for all particles. 

Figure 7 shows the trapping time for particle concen- 

tration separated by monitoring network. In this case the 

average time that this non-linear system stays in the same 

state seems fairly constant with a low median between 10 

and 13. It is also worth noting that for most sites there are 

outliers which cannot be explained in detailed using this 

approach. 

In Figure 3 is shown the recurrence Rate for all Moni- 

toring networks. In this figure, it is worth notice that the 

median recurrence rate lies from 10 to 13, with the low- 

est recurrence rate being for Mexico Northwest. The 

other sites seem to have a fairly constant spread of the 

percentiles. 

Figure 8 shows the laminarity for particle concentra- 

tion by monitoring network. Since the laminarity is the 

measurement of chaotic transitions, it can be inferred that 

regardless of the site the changes in laminar phases in the 

system seem high. 
Figure 4 shows the determinism for years 2005-2010 

by monitoring network shows a fairly constant mean for 

all sites. However, there are outliers for all sites showing 

an increase of over 80 in many cases. This exceptionally 

higher determinism may be explained in greater detail in 

the analysis by particle, which could give an insight of 

the reason this happened. 

The last measure for this approach was the trend. 

Since the trend represents the measure of the positioning 

of recurrent points away from the central diagonal, that is 

the paling of the RP towards its edges [34]. A ‘‘flat” dia- 

gram indicates stationarity, whereas drift in the signal 

will result in the overall increase or reduction of dis- 

tances as the signal is moved away from the main diago- 

nal. In this respect, it could be noticed that most of the 

sites have a median between 11 and 14. This is shown on 

Figure 9. 

The ratio for particle concentration (Figure 5) seems 

fairly stable for all sites ranging from 0 to 2 as a mean 

and the percentiles increasing up to 4 for some cases. The 

only exception for this drift is the monitoring station of the 

Northwest with ratios up to 10 and an outlier of about 38. 

Furthermore, for entropy the frequency distribution of 

the data is also stable. Their median oscillates between 2 

and 3 for all monitoring networks showing the percen-  

4.2. Results by Particle Type 

For this approach, the recurrence quantification analysis 
 

 

Figure 3. Recurrence rate, years 2005-2010 by monitoring network. 
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Figure 4. Determinism, years 2005-2010 by monitoring network. 

 

 

Figure 5. Ratio for particle concentration, years 2005-2010 by monitoring network. 
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Figure 6. Entropy for particle concentration, years 2005-2010 by monitoring network. 

 

 

Figure 7. Trapping time for particle concentration, years 2005-2010 by monitoring network. 
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Figure 8. Laminarity for particle concentration, years 2005-2010 by monitoring network. 

 

 

Figure 9. Trend for particle concentration, years 2005-2010 by monitoring network.    
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is carried out by particle type. In Figure 10 the recur- 

rence rate by particle type is shown. In this figure is 

shown the recurrence Rate for all five particles (CO, O3, 

NO2, SO2 and PM10). It is worth notice that the median 

recurrence rate for all particles varies. For CO, the me- 

dian lies between 13 and 18. Both Ozone and particulate 

matter shows a low recurrence rate below 6 for all years, 

regardless of the monitoring sites. Nitrogen dioxide shows 

a slightly higher recurrence with a median between 10 

and 12.  

However, Sulphur dioxide shows a median above 30 

for some years. This explains Figure 3, where the whisk- 

ers of the boxplots show a much higher recurrence in 

some cases, these cases being for sulphur dioxide. This 

higher recurrence rate may be due to the low variances in 

values of the datasets for all years, making it easier for 

RQA to determine recurrence. 

Furthermore, the determinism for SO2 is also much 

higher than for other particles, having a median between 

70 and 90 as shown on Figure 11. Although it seems 

lower due to the scaling of the boxplots, the median 

shows otherwise, the spread in the 25th to 75th percent- 

tiles and the length of the whiskers may be due to high 

variances in the datasets for that type of particle. 

Furthermore, it is worth notice for entropy (Figure 12) 

that the frequency distribution of the data is slightly 

higher for sulphur dioxide as well. The other particles 

seem to have steady entropy whose median oscillates 

between 1 and 3. 

Figure 13 shows the trapping time separated by parti- 

cle type. For this figure it can be seen that Sulphur Diox- 

ide shows also a much higher trapping time showing a 

median of 40 for some years (e.g. 2008 and 2009) in 

comparison with the other particles between 10 and 13. 

This explains the outliers seen on Figure 7, that could 

not be explained using the monitoring networks’ ap- 

proach. 

Figure 14 shows the laminarity for particle concentra- 

tion by particle type. In this figure, is shown that for 

Carbon Monoxide and PM10 the chaotic transitions are 

high, specially for sulphur dioxide. This gives another 

insight of the chaotic transitions, since Figure 8 shows 

that the laminarity is high for all sites, in Figure 14 can 

be explained that only some particles gives this high 

changes in laminar phases. 

5. Conclusions and Future Work 

Numerous experiments have been carried out with dif- 

ferent particles and through different years. Using Re- 

currence Quantification Analysis it could be shown that 

information could be extracted from large datasets of 

dissimilar airborne particles during a considering time 

lap (six years, in this case) for 5 monitoring networks. 

 

 

Figure 10. Recurrence rate for particle concentration, years 2005-2010 by particle type. 
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Figure 11. Determinism for particle concentration, years 2005-2010 by particle type. 

 

 

Figure 12. Entropy for particle concentration, years 2005-2010 by particle type. 
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Figure 13. Trapping time for particle concentration, years 2005-2010 by particle type. 

 

 

Figure 14. Laminarity for particle concentration, years 2005-2010 by particle type. 
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Trends could be identified using these tools and prelimi- 

nary conclusions suggest that important information such 

as density distribution, drifts, among others could be 

drawn. Also, using more than one approach, some hidden 

features could be identified showing the feasibility of this 

approach.  

For future work, it could be useful to use a combina- 

tion o RQA with prediction algorithms such as Support 

Vector Machines to carry out prognosis of the airborne 

particle data. Another useful approach that could be car- 

ried out is the use of cross recurrence plot (CRP), making 

a comparison between two recurrence plots to determine 

trends.  
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