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Modeling PMx Trends Contaminants by using Support
Vector Machines
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Abstract. Monitoring, modeling and forecasting of air quality parameters are
important topics in environmental and health research due to their impact
caused by exposing to airborne particles in urban environments. The aim of this
article is to show that forecast of daily airborne pollution using support vector
machines (SVM) and Kernel functions such as Polynomial, Gaussian, and
Spline are feasible. Results are presented using data measurements of
Particulate Matter of aerodynamical size on the order of 10 and 2.5 micrograms
(PMx) in London-Bloomsbury at south England.

Keywords: Particulate matter, Support Vector Machines, Kemel techniques,
PMx, airborne pollution, forecast.

1 Introduction

In recent times, urban air pollution has been a growing problem especially for
urban communities. Size, shape and chemical properties govern the lifetime of
particles in the atmosphere and the site of deposition within the respiratory tract.
Health effects differ upon the size of airborne particulates. In this contribution, PM10
(particles less or equal than 10 micrometers) and PM2.5 (particles less or equal than
2.5 micrometers) are considered due to its effect on human health, according to
several authors [1-6]. This is the primary reason this research has been done; to
monitor, and model the levels and spread of PMx in urban environments. In previous
contributions, it has been shown that forecast of concentration levels of PM10 may be
possible by using other techniques such as neural networks and various fuzzy
clustering algorithms [7-8]. However, even though these works have shown that is
feasible to accurately model the non-linear behavior of the system, a more robust
model is needed with an enhanced method to reduce the error between the raw data
and the model. For this reason, support vector machines (SVM) are chosen for this
work. In this appraisal, the modeling will be carried out using support vector
machines working in regression mode. Support vector machines are a recent statistical
learning technique, based on machine learning and generalization theories, it implies
an idea and could be considered as a method to minimize the risk [9]. Also, a
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generalization capability makes possible their application to modeling dynamical and
non-linear data sets.

2 Support Vector Machines

2.1 Support Vector Machines Background using Regression Mode

The support vector machines (SVM) theory, was developed by Vapnik in 1995, and
is applied in many machine-learning applications such as object classification, time
series prediction, regression analysis and pattern recognition. Support vector
machines (SVM) are based on the principle of structured risk minimization (SRM)
[10-11].

In the analysis using SVM, the main idea is to map the original data x into a
feature space F with higher dimensionality via non-linear mapping function ¢, which
is generally unknown, and then carry on linear regression in the feature space [10].
Thus, the regression approximation addresses a problem of estimating function based
on a given data set (where x; represent the input vectors, djare the desired values),
which is produced from the ¢ function. SVM method approximates the function by:

Ms

Y= Wa(x)+b=wHx)+b (1)

where w = [wy, ..., w,,] represent the weights vector, b are the bias coefficients and
O(x)=[®(x),...,0u(x)] the basis function vector.
The learning task is transformed to the weights of the network at minimum.

The error function is defined through the e-insensitive loss function, Ldd,y(x)) and is
given by:

Lf(d,y(x»={ ld=yxl-¢  |d-yx|ze .
0 others

The solution of the so defined optimization problem is solved by the introduction of
the Lagrange multipliers a;, @, (where i=12,....k) responsible for the functional

constraints defined in Eq. 2. The minimization of the Lagrange function has been
changed to the dual problem [9]:

£ k
¢(a,a')=[ d,(a,.-—a;)_gg (ai_ai')
e i=1
| k _k 1 X (3)
-2 L@@ @, a)K(X, X))
=l j=1

With constraints:

k
> (@.a)=0, @)

=l
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0<a <C0<a <C

Where C is a regularized constant that determines the trade-off between the training
risk and the model uniformity.

According to the nature of quadratic programming, only those data corresponding
to non-zero (¢, —ai')pairs can be referred to support vectors (nsv). In Eq. 3 K¢x; ,
X;)=@(x;)*#x;) is the inner product kernel which satisfy Mercer’s condition [13] that is
required for the generation of kernel functions given by:

K(x, X =(9(x). 9(x,)) (5)
Thus the support vectors associates with the desired outputs y(x) and with the input
training data x can be defined by:

Nsv
=D (@, )K(x x)+b (6)

i=l
Where x; are learning vectors. This leads to a SVM architecture (Fig. 1) and are
also founded in [9][10][14].

Output:
Nsv
Y (@.e)K(x,x)+b

i=]

Dot Product
(P(x)e@(x))=k(x.x))

Mapped Vectors
B(x), D(x:)

Support Vectors X1 ... Xk E E] m

Test Vectors x

Fig. 1. Support Vector Machine Architecture.

2.2 Kernel functions.

The use of an appropriate kernel is the key feature in support vector applications,
since it provide the capability of mapping non-linear data into “feature” spaces that in
essence are linear, then an optimization process can be applied as in the linear case.
This provides a means to dimensionality the problem properly, but still the results
depends of the good selection of a set of training datasets.

The Gaussian kernel function is defined in [11-13] Eq. 7.

(-l

K(&~X;)=°XPLT~'J ™
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The Gaussian kernel process delivers an estimate for the reliability of the prediction
in the form of the variance of the predictive distribution and the analysis can be used
to estimate the evidence in favor of a particular choice of covariance function. The
covariance or kernel function can be seen as a model of the data, thus providing a
principled method for model selection [13-15].

A polynomial mapping is a widely used method for non-linear modeling [13][15],
defined by:

K(x, x,.)=<x,., x,.)d (8)

Unless the used of equation 8 implies an inherit problem, some Support Vector
Machines become zeros, therefore is preferable to rewrite the expression as:

K(x,.,xi)z«x,,x,.>+l)d 9

In this survey, a Spline kernel is presented as a choice for modeling due to their
flexibility. A spline, of order with NV knots located at T, is expressed by:

LS LS
k k
K(x, X)= 2 XX+ D (%= 1) +(%~T,) (10)
r=0 s=|
If k=1 and the Spline function is defined as
1 : 1 ; 3
K(x, x)=1+(x, x,>+5(x,., X, ymin( X, x,.)—g<x,, X, ymin( X, X,) (11
Where the solution is a piecewise cubic.
2.3 General Considerations.

Bias Analysis

The inclusion of a bias within the kernel function generally leads to a more
efficient implementation and a slightly better accuracy model. Conversely, the
solution achieved with an implicit or explicit bias are not the same. This dichotomy
emphasizes the difficulties with the interpretation of generalization in high
dimensional feature spaces. In this work the explicit bias approach is used.
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Free Parameters

Other important issues in support vector applications are the selection of free
parameters such as the coefficient of C, the value of error € it determine the margin
within which error is neglected and in the Gaussian kernel function the value of
variances o[15-17].

The Quadratic Programming Problem

The SVM training works flawlessly for not too large data points. However, when
the number of data points is large (e.g, over 2,000 data points), the Quadratic
Programming (QP), problem becomes extremely difficult to solve with standard QP
solvers and methods [13-17]. In the study case of this survey, the number of data
points is 365, where each data point represents the daily average ofPMx
concentration. Therefore the analysis and solving of the QP problem is not considered
in the scope of this survey.

According to [11-13], the insensitive loss function is equal to these slack variables,
where the €-insensitive loss function is defined in equation 2, similarly the quadratic
e-insensitive loss function is defined by

L.(d y(x))=|d- yx): (12)

Figures 2a y 2b, show the form of the linear and quadratic e-insensitive loss
functions. The e-insensitive loss function is attractive because unlike the quadratic
cost function, where all data points will be support vectors, then the solution can be
sparse. The quadratic loss function produces a solution which is equivalent to ridge
regression.

o Noew b 0 WK

Fig. 2a. The linear e-insensitive loss for zero Fig. 2b. The quadratic €-insensitive
and non-zero € loss for zero and non-zero €

Fig. 2. The e-insensitive loss functions for zero and non-zero €
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3 Methodology

The proposed Methodology have been taken from [3-4], such this works provides
the general steps to make pollutants modeling and predictions by using SVM working
in regression mode. In this survey Gaussian, Polynomial and Spline kernel functions
are used [3][4][13][14][15], a Gaussian distribution provides a natural representation
of the system behavior [13][15]. The aim of this survey is to show the relations
between kernel Gaussian, Polynomial and Spline kernels and the obtained SVM
models. In order to perform an appropriate design, train, and testing of SVM this
article describes a generic methodology based in a review of [3-4]. See Fig 3.

(a) Preprocessing of the input data
by selecting the most relevant features,
scaling the data in the range [—1, 1],
and checking for possible outliers.

(b) Selecting an appropriate kernel
Junction that determines the hypothesis
space of the decision and regression
function.

(c) Selecting the parameters of the
kernel function, in polynomial kernels
the degree for polynomials and the
variances of the Gaussian kernels
respectively.

(d) Choosing the penalty factor C
and the desired accuracy by defining
the e-insensitive loss function.

(e) If required, solving the QP
problem in [ for classification problem
and 2l variables in the case of
regression problems.

(f) Validating the model obtained on
some previously, during the training,
unseen test data, and if not pleased
iterate between steps (c) (or, eventually
b) and (e).

Fig 3. Diagram of the proposed Model Solution

The fundamental reason for considering SVM working in regression mode as an
approach for PMx modeling is the non-linear aspect of the application. There is no
predetermined heuristic for the choice of free parameters and design for the SVM,
many applications appear to be specific, in order to improve the SVM performance
trough the automatic adjustment of free parameters. Using SVM on real time
applications appear to be rather complex since of the computational demands of the
deriving results.
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4 Experimental Results

The Support Vector methodology can be applied in the case of regression,
maintaining all the main features that characterize the system behavior. A Support
Vector Machine in a kernel-induced feature space learns a non-linear function while
the capability of the system is controlled by a set of parameters that do not depend on
the dimensionality of the space. In this section, a set of results and simulations is
presented. This is carried out by using the proposed regression SVM model approach
with Gaussian, Polynomial and Spline kernel functions and standard nonlinear data
sets of PMx. During 2009, simulations were carried out using the proposed SVM
model. The 6 values were modified to 1 and 2. Likewise, the € values were modified
to 7, 11 and 13. For every case study, the normalized value C remained content to a
value of 100.Also is observed that the error rate of standard SVM varies wildly
depending on different values of SVM free-parameters and kernel parameters. Figure
4 shows a summary of the results with the Support vector machine (in red circles), the
raw data (black cross) and the behavior of the data (solid black line). These results
show that the best results are obtained with 6 of 2 and an € of 13 (figures 4a and 4b)
due to the small number of SVMs and small error rate, whilst the worst-case scenario
is obtained with a 6 of 1 and an € of 13 (figure 4d), since a large number of SVMs are
obtained.

Figure 4a: Prediction. of PMx concentration in Figure 4b: Prediction of PMx concentration ir;
January using a Polynomial kernel. October using a Gaussian kernel.

Figure 4c: Prediction of PMx concentration in Figure 4d: Prediction of PMx concentration in
January using Polynomial kernel. October using Gaussian kernel.

Figure de: Prediction of PMx concentration in ‘ Figure 4f: Prediction of PMx concentration in
January using Polynomial kernel. October using Polynomial kernel.

Figure 4: Prediction of PMx concentration
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Table 1.Summary Results

2;:;;].)]85 Polynomial kernel Gaussian kernel Spline kernel
No. Incorrect No. Incorrect | No. of | Incorrect
of SVM | Forecasting | of SVM | Forecasting | SVM Forecasting

January 17 3 26 1 17 3
February 6 5 18 3 15 5
March 12 + 28 1 24 3
April 12 + 25 0 22 2
May 8 3 23 2 19 3
June 13 1 20 1 15 2
July 18 1 26 1 17 0
August 11 2 24 1 20 3
September 16 1 25 2 20 4
October 18 0 28 | 23 3
November 1.7 1 24 2 21 5
December 15 3 26 2 24 6

From these results, it can be concluded that for this case study a ¢ of 1 gives a
similar number of SVMs with respects to the number of data points. This
exponentially increases the computational cost, making it unfeasible to calculate it.

5 Discussion and Conclusions

This survey has presented a modeling method of the daily atmospheric pollution by
applying the support vector machine with Gaussian, Polynomial and Spline kernels
functions working in regression mode. The application of SVM has enabled to obtain
a good accuracy in modeling pollutant concentration of both PM10 and PM2.5. The
methods, techniques and alternatives offered in the SVM field provides a flexible and
scalable tool for implementing sophisticated solutions with implied dynamical and
non-linear data. It is noteworthy to point that the SVM guarantees this global
minimum solution and a good feature of generalization. Furthermore, implementing
other kernel functions such as wavelet and hybrid functions may be implemented for
future contributions.
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