
International Conference on Soft Computing, Optimization, Simulation & Manufacturing Systems April 21-23, Miami, Florida

Describing an IMS by a FNRTPN definition: A VHDL approach

 C. A. Graciós Marín,1, E. Vargas Soto2, A. Díaz Sánchez1,3

1Instituto Tecnológico de Puebla.
Av. Tecnológico No. 420, Colonia Maravillas Puebla, Pue. México. 72220

Teléfono (52) 222-229-88-24 Fax (52) 222-222-21-14

2 Centro de Ingeniería y Desarrollo Industrial(CIDESI).
Av. Pie de la Cuesta #709 U. Hab. Des. San Pablo,Santiago de Querétaro, Qro. México.

Teléfono (52) (443) 2-11-98-00

3 Inst. Nal. de Astrofísica, Optica y Electrónica, Luis Enrique Erro No. 1
Tonantzintla, Puebla, Pue. México. P.O. Box 52 Teléfono (52) 222-247-20-11

(1)cgracios@itpuebla.edu.mx (2) emilio@mecatronica.net (3) adiazsan@inaoep.mx

Abstract

A new Petri net extension and a novel method describing
the structure and behaviour of an Intelligent
Manufacturing System (IMS), using a VHDL tool, is
proposed. The PN extension is defined as Fuzzy Neural
Real Time Petri Net (FNRTPN), where the fuzzy part let
the intelligent scheduling of the tasks for the IMS, and the
neural part calculates the estimation of the parameters of
the set point for each resource in the system. At last,
VHDL is proposed as a Unified Modelling Language
(UML) to express the model of the manufacturing
process. The extension and VHDL are used to apply a
fuzzy neural control scheme to a FMS.

Keywords.

Intelligent Manufacturing Systems; modelling intelligent
process; Simulation; Fuzzy Neural control strategy.

1. Introduction

The design, modelling, simulation, fault analysis and
control of Flexible Manufacturing Systems, have
interested in the last 30 years to academic and industrial
communities. Despite several solutions have been
proposed, the actual requirements of the manufacturing
systems, implying the insertion of intelligence in the
elements and devices included in the process [15]. In that
way, the active interaction of the human with software
and hardware, agility, fault tolerance and the adaptability
in general, are decisive characteristics that any intelligent
manufacturing system should satisfy [1]. Therefore, the
new methods and tools for design, simulation and control,
must include a unified modelling language that establish a
direct translation between the parameters of the process
and the different strategies of intelligent control.
The present work begins with a brief description of the
state of the art for modelling, simulation and control of
FMS, where Real Time Petri nets are modified to
introduce a new extension of PN, and strategies for
intelligent control applied in manufacturing systems.
After that, fundamental theorems for the new Petri nets

extension are expressed. Finally, an example of
modelling, simulation and control of an Intelligent
Transportation, into an IMS, is described. VHDL will be
used for the modelling and control of the IMS, to show
the requirements improvement in an actual manufacturing
process.

2. Petri Nets Definitions

2.1 Real Time PN model.

Nowadays, Petri nets have been used as an option for
modelling, simulation, analysis and control for
manufacturing systems. According to of Venkatesh et al
[2], Real Time Petri Nets (RTPN) not only models the
manufacturing process, but obtains the direct digital
control system, described by a Ladder Logic Diagram
(LLD).
A RTPN can be obtained by associating timing, and I/O
(input/output) set of information to the untimed PN,, and
it can be defined as:

RTPN={P, T, I, O, m, D, X, Y}

where:

P = {p1, p2,..., pm} is a finite set of places;
T = {t1, t2,..., tn} is a finite set of transitions with P∪T = 0
and P∩T = 0;
I: P x TÆ N is an input function that defines the set of
directed arcs from P to T where N = {1, 2,...};
O: P x TÆ N is an output function that defines the set of
directed arcs from T to P;
mi: PÆ N, is a marking vector whose ith component
represents the number of tokens in the ith place. An initial
marking vector is denoted by m0;
D: TÆ R+, is a firing time function where R+ is the set of
non-negative real numbers;
X: PÆ {-, 0, 1, 2,..., K} and X (pi)≠X(pj), i≠j, is an input
signal function, where K is the maximum number of input
signal channels, and " -" is the dummy attribute indicating
no assigned channel to the place. (See figure 1).
Y: TÆ L, is an output signal function, and L is a set of
integers.

International Conference on Soft Computing, Optimization, Simulation & Manufacturing Systems April 21-23, Miami, Florida

Figure 1. Input and output vectors in RTPN extension

RTPN properties.

1. Timing vector (D) is intended to associate time delays

to transitions modelling the activities in the system.
2. Input signal vector (X) reads the state of the input

signals from digital input interface. X associates
attributes to every place. Xi = X (pi), where pi
represents the number of channels (bits) of the input
pi. The contents of any Xi are either 0 or 1.

3. Output signal vector (Y) is intended to send output
signals through digital output interface. Y associates
attribute to every transition. Yi = Y (ti) is the attribute
associated to transition ti which represents the number
that is to be sent to the digital output interface.

While the program is executed, RTPN writes the decimal
number corresponding to the output channel to digital
output interface when a transition is fired.
Using the X y Y vectors, a new extension, based on the
inclusion of decision strategy by intelligent control, and
the parameter acquisition of the process for the regulation
the best estimation can be obtained by using a neural
network with back propagation training.
In addition, a new variation for hardware description
languages, using direct translation for the control
expressed in a ladder logic diagram, is available. That
new alternative compacts the design and development for
the intelligent control in a programmable device, which
can be applied at the process modelled [3, 4].

2.2 The Fuzzy Neural RTPN model

Several contributions on the application of intelligent
control to solve specific problems can found in recent
literature. Some propositions, based on intelligent control
strategies, allow the timing, sequencing and scheduling of
tasks, adding adaptability to process parameter variations,
such that velocity, position and used materials [5, 6].
Fuzzy logic, neural networks (NN), genetic algorithms
and hybrid systems are actually applied in intelligent
manufacturing system. In fact, fuzzy and neural networks
are the most common structure used to control the
activities, like robots, conveyor belts and CNC machines,
of specific manufacturing process. Moreover, the
inclusion of fuzzy and NN in PN definition to solve the
short-term control, are included in recent works [16].
The present work describes a neurofuzzy control scheme,
where neural part measures the signal error on the coupled
sensors in each one for the regulation of the control

parameters, and allows evaluating the task sequencing.
Since a fuzzy task scheduler, which determinates the
activation of resources according to disposability, can be
defined, the goal of intelligent parameter adjusting of each
resource of the process, based on previous fuzzy
decisions, improves the adaptability.

Figure 2. FNRTPN extension

3. VHDL and Intelligent Control scheme

Figure 2 shows the FNRTPN extension, where the Y
channel add the fuzzy logical decision on the PN firing ,
which simulates the decision taken to activate the
resources of the real process. The NN part is applied to
estimate the condition of the resources using a back-
propagation scheme. Since the condition of the whole
process is known, the availability of the resources and the
firing decision of the tasks can be controlled.
In order to include the fuzzy and NN schemes to the
original definition of the RTPN, a two mapping function
must be firstly defined.
 If a new firing vector of the PN F is defined, restricted to
the fact that scheduler knows the state of the places in any
time of the evolution of the process. The definition of F
requires a mapping to translate the fuzzy logical operation
values of the scheduler into converted digital values for
the original RTPN. That fuzzy scheme provides an
intelligent firing procedure for one or more transitions to
enable activities (places) of the resources modelled. In
other words, F is indirectly mapped by the firing vector D
to FIRE the change transition of the RTPN actual states.
To evaluate the actual state activities, the neural part is
connected to the X digital channel, which recognises the
values of the sensors.
Neural networks (NN) can be applied to adjust the
parameters for a soft variation in a typical discrete PID
control scheme [7]. However, the X channel is used to
modify the condition of the transitions firing (enabling the
activities). Since the output of the final neuron convert the
real value of the sensor connected in the structure, to a
fuzzy value which is evaluated for the scheduler to
determine the actual condition of each recourse.
Consequently, the NN identifies the actual values of the
resources (position, velocity, pressure, etc) to be known
by the scheduler to decide the next activity. Therefore, if
Z= {z1, z2, …, zm} is the finite set of neurons connected to
each X channel, Z: XÆ P, where the digital values of the

X Y

DIGITAL CHANNEL

Intell
i Ctrl

Y >FUZZY CH.

X >NEURAL CH.

International Conference on Soft Computing, Optimization, Simulation & Manufacturing Systems April 21-23, Miami, Florida

sensors are evaluated by the NN to refine the decision of
the scheduler and the values to be adjusted in the actuators
of each resource, and m is the number of places,
indicating the status of all the resources. Therefore, the
number of sensor must be connected to verify the actual
condition of each resource.
For the present work, a single-slide back-propagation
neural network structure is proposed, because its
efficiency in two-slides scheme [7, 12]. The neural
scheme is shown in Figure 3. That structure will be only
used in the auto tuning strategy for the discrete and
analogue actuators of the resources. The final decision on
the parameter values will depend on the scheduler.

Figure 3. Neural scheme

3.1 VHDL description for FNRTPN

VHDL is a suitable tool to describe and model DES by
the structural and behavioural definitions in the entity and
architecture schemes. Several authors propose VHDL to
model structures of intelligent control, incorporating
fuzzy, NN, or other kind of schemes applied in FMS for
sequencing, scheduling and control.
Using typical command description for discrete systems, a
good level definition can be obtained to describe the
structure and behaviour of the FNRTPN model.

3.2 Fuzzy Neural Control Scheme

The use of a hardware description language is proposed as
a tool of simulation and analysis for the FNRTPN model
to develop a neurofuzzy control scheme to be applied in
the real process. VHDL allows a concurrent design, which
uses a unified modelling language with a unique database,
generated and addressed at any step of the method.
Despite VHDL is mainly used in the design of complex
digital circuits, it can be used in FNRTPN to describe
processes like DES. Al last, the simulation, analysis and
design of the control can be evaluated using a typical
discrete event evolution diagram, where transition signals
express the discrete behaviour of the process in terms of
the scheduling, timing and sequencing of task.
If the simulation and analysis have been exhaustively
realised without find problems in feasibility, the next step
for the synthesis of the intelligent control can be made.

Using the report generated for VHDL tool, an Inverse
Logistic Algorithm (ILA) can be proposed to obtain the
structure of the control scheduler. Therefore, the fuzzy
vector F, and the neural set NN allows the interconnection
between the real process and the intelligent control
scheme (See figure 2).
The structure and design for the scheduler was proposed
by Salapura [8], where the fuzzifier, the defuzzifier, the
set of rules and the inference machine are coded in
VHDL. Moreover, the behavioural information is
obtained by the ILA algorithm applied to the FNRTPN
model of the process.

The ILA procedure is as follows:

Each ti (process) is marked as pj (FNCS)
Each pi (process) is marked as tj (FNCS)
I ÅÆ O for each state in the structure of the FNRTPN
A(FNCS) = A-1(process)
Evolutionary method (Dadone)
ASM description for the structure and behavioural
obtained.
Coupling step between the CORE defined for typical
resources restricted for CADYC method proposed and the
ASM description.
Definition in VHDL.
Testing until complete satisfaction.

That algorithm is based on the scheme suggested by
Dadone in 1997 [16], where an evolutionary programming
method is presented. The method offers improvements in
the use of VHDL, as a unified modelling language, for all
the steps required in control schemes if the process is
always described like a DES, and the control strategy is
implemented in a programmable device.

Figure 5. System to be modelled

4. An Example – Intelligent transport

Figure 5 shows the layout of the Transport system, which
is a part of a FMS analysed in Instituto Tecnológico of
Puebla. That system is used for distribution and inspection
of the parts manufactured in the FMS. The neurofuzzy
control scheme, allows an intelligent adjust for the
process. Two MitsubishiTM 5 degrees of freedom robots
are included as resources of manipulation of the pieces.

MANIPULATOR
WITH CAMERA

3 TYPES
OF PARTS FOR
 DISTRIBUTIÓN

PARTS
SELECTED
DISTRIBUITED

 SLAVE
MANIPULATOR

ROBOT 1 ROBOT 2

CV 1 CV 2

1
2
3

International Conference on Soft Computing, Optimization, Simulation & Manufacturing Systems April 21-23, Miami, Florida

The first robot includes a camera vision for the detection
of the pieces and the piece can be taken. Two conveyor
belts (cv), driven by, servo motors are used for
transportation. Additional sensors and actuators are
included, as shown at Figure 6.

Figura 6. Signals for the system

Figure 6 is an extended layout of the system to be
modelled and controlled, where the X and Y parameters
for the FNRTPN are obtained. By using that information,
the structure for the FNRTPN can be created.
Figure 7 shows the the TAD of the transport system. The
description is obtained by the application of Woi and
Bundell method proposed in [5], and the tool developed in
[11]. The ASM description and the FNRTPN model are
obtained, and results are shown in Figures 8 y 9.
The obtained ASM description describes the process task
sequence and their conditional decisions, where intelligent
control can be applied. Figure 9 shows the final FNRTPN
model, where the specific tasks of the process are defined
and the transitions are finite. Each transition receives a
fuzzy channel fi for the scheduler, in order to choose the
evolution and adequate sequencing, according to the
estimated values of the system by the neural part.

 Start

Ready to run

Run

Stop CV 1

Process Identification Watch Dog Timer

Identification
o

WDT?

Wait for piece

Alarm

Stop

End

WDT

Pieces in
CV 2 > 3

(I > 3) Wait I < 3

I = I + 1

Identified
Not

Yes

Signal control for
To CV 2 (I ≠ 0)

Scheduler

A

A

Start button

 OK Sensors

Sensor 1 = 0 : Piece in position

Start processses
(1)

Piece identified
Time expired

(1) This process is not take in account due
It is out of the definition for this specific
research

CENTRAL SYSTEM
OF

COORDINATION

Figure 7. TAD description

Start

Wait piece in
CV 2

Position? 1

2

Starting the sequence

Sensor 2 = 0: Piece in position

Task for t he
sc hedu ler

3

Decision 1 Decision 2 Decision 3

Wait piece
in position

Robot movement

Hold piece

Transport piece

Wait for return
(home position)

I = I - 1

B

B

Figure 8. ASM Description

Figure 9. FNRTPN model

M M
CONTROLADOR

ROBOT 1
CONTROLLER

ROBOT 1
CONTROLADOR

ROBOT 1
CONTROLADOR

ROBOT 2

TORRETA
ALARMA

TORRETA
ALARMA

M M

ARRANQUE
PARO
ARRANQUE
PARO

SEÑAL DE
ENTRADA

SEÑAL DE
SALIDA

International Conference on Soft Computing, Optimization, Simulation & Manufacturing Systems April 21-23, Miami, Florida

Can be noticed similar transportation tasks for each type
of piece, because they have been defined a priori in a
VHDL CORE. The discrete model for the servomotors,
cv’s and robot dynamics, were modelled using linear
discrete state variable equations. The student version
BASELINE 10.7 of ALTERATM was used, and the
programming scheme was developed in C language for
MS-DOSTM, using a NETLIST definition. Figure 10
shows the synthetic structural and behavioural description
for the FNRTPN model.
The directive entity is used to define the input signals
(fuzzy,) and output signals (neural), which are expressed
in the PORT command, where all the resources allowed
states, and fixed times assigned to specific tasks are given.
Figure 11 shows the neurofuzzy control description
obtained using the proposed method of ILA applied at the
FNRTPN model, where the X and Y transposition can be
observed and the D’s state are determined.
Despite the direct neural control is defined a priori by the
CORE, the final decision to change the PID parameters of
the actuators resides on the scheduler. Similar values for
the Neural PID were pre programmed and obtained as in
[12] for the servo motors and the robots. To evaluate the
performance of the FNRTPN and the real evolution of the
system, a discrete simulation is showed in Figure 12.

Figure 10. VHDL description of the FNRTPN model.

Figure 11. Partial VHDL description of the neurofuzzy
control scheme (Part 1)

Figure 12. Partial VHDL description of the neurofuzzy
control scheme (Part 2)

ENTITY intctrl IS
PORT (robot2_ctrl,robot1_ctrl,start,cam_ctrl,cv_m_1,cv_m_2,paro,clk: OUT

std_logic;
cv_sensor1,cv_sensor2,robot1_sensors,robot2_sensors,act_states,cam_si
gnal: IN std_logic);

END intctrl;

ARCHITECTURE description OF intctrl IS
-- Scheduler definition
 CONSTANT finite_time: integer:=100;

 TYPE decisiones IS (d1,d2,d3,d4,d5,d6); -- the logistic decisions
 SIGNAL presente: decisiones:=d1;
 SIGNAL robot2_ctrlaux,robot1_ctrlaux,camaux,centriaux: std_logic:=’0’;
 SIGNAL tiempo: integer RANGE 0 TO 16#1FFFF# :=0;
 SIGNAL subtiempo: integer RANGE 0 TO 1023 :=0;
SIGNAL aux_param: integer RANGE 0 to 256:=0 –for a byte word lenght
BEGIN
 intctrl:
 PROCESS(act_states)
 BEGIN
 IF act_states="101001" THEN
 CASE presente IS
 WHEN d1=> -- the set of rules
 clk<='1';
 IF cv_sensor1='0' THEN presente<=d2; END IF;
 IF cv_sensor2='0' THEN presente<=d6; END IF;
 cv_m_1<='0'; cv_m_2<='0'; robot1_ctrl<='0';robot2_ctrl<='0';
 tiempo<=0;
 subtiempo<=0;
 WHEN d2=>
 robot1_sensors<='0';
 IF cam_signal='0' THEN cam_ctrl<='1';
 ELSE fuzzifier(paro);
 END IF;
 ...
 END CASE;
 END IF;
 END PROCESS ctrl;

ENTITY fms1 IS
PORT(
robot2_ctrl,robot1_ctrl,start,cam_ctrl,cv_m_1,cv_m_2,
paro,clk: IN std_logic;
cv_sensor1,cv_sensor2,robot1_sensors,robot2_sensors,
act_states,cam_signal: OUT std_logic);

END fms1;

ARCHITECTURE description OF fms1 IS
-- Aquí se asignan tiempos a cada transición:
 CONSTANT T1: integer:=1; -- Estos tiempos han sido

…
 TYPE estados IS (p11,p12,p13,p14,p15,p16); -- Def. de estados
 SIGNAL presente: estados:=p1;
 SIGNAL robot2_ctrlaux,camaux,robot1_ctrlaux: std_logic:='0';
 SIGNAL tiempo: integer RANGE 0 TO 16#1FFFF# :=0;
 SIGNAL subtiempo: integer RANGE 0 TO 1023 :=0;
BEGIN
 fms:
 PROCESS(clk)
 BEGIN
 IF clk='1' THEN
 CASE presente IS
 WHEN p1=>
 IF start='11' THEN presente<=p12; END IF;
 IF paro='1' THEN presente<=p16;

END IF;
 cv_sensor1<='0'; cv_sensor2<='0'; robot1_sensors<='1';
 act_states<='0'; robot2_sensors<='0'; camaux<='0';
 tiempo<=0;
 subtiempo<=0;
 WHEN p12=>
 robot1_sensors<='0';
 IF cam_ctrl='0' THEN cv_sensor1<='1';

 …-- Continua descripcion

 END CASE;
 END IF;
 END PROCESS fms;

 PROCESS(robot1_ctrl)
 BEGIN
 IF robot1_ctrl='1' THEN robot1_ctrlaux<=NOT robot1_ctrlaux;

 END IF;
 END PROCESS;

 PROCESS(robot1_sensors)
 BEGIN
 IF robot1_sensors='1' THEN centriaux<=NOT centriaux;

 END IF;
 END PROCESS;

 PROCESS(cv_sensor1)
 BEGIN
 IF robot2_ctrl='1' THEN robot2_ctrlaux<=NOT robot2_ctrlaux;

 END IF;
 END PROCESS;

 PROCESS(fuzzifier[aux_param])
 BEGIN
 Signal in_var:INTEGER 0 to 256:=0;

BEGIN
In_var< = aux_param;
 IF reset = ’1’ THEN
memb_var <= (Others => ’ 0 ’); --All the bits are set to zero
ELSIF clock’EVENT and (clock = ’1’) THEN
 IF (in_var <tm1m) THEN
 tmp := conv_std_logic_vector(unsigned(unsigned(in_var) -
 unsigned(start))*unsigned(delta), 8);
 memb_var(7 downto 0) <= tmp;
 memb_var (set_nr*8-1 downto 8) <= (Others => ’0’);
 ELSIF (in_var <tm2m) THEN
 tmp := conv_std_logic_vector(unsigned(unsigned(in_var) -
 unsigned(tm1m))*unsigned(delta), 8);
 memb_var(7 downto 0) <= conv_std_logic_vector(1-
unsigned(tmp),8);
 memb_var(15 downto 8) <= tmp;
 memb_var (set_nr*8-1 downto 16) <= (Others => ’0’);
 ELSIF (in_var < tm3m) THEN
 ...
END PROCESS;
END IF;
 END PROCESS;
END description;

International Conference on Soft Computing, Optimization, Simulation & Manufacturing Systems April 21-23, Miami, Florida

The adequate evolution between the real performance of
the FMS and the control decisiones of the scheme
obtained by our method can be noticed. The evolution of
the real system was evaluated in other environments like
ARENATM, OOPN tools, but the observance of the model
and the control in the same platform, was hard to realize.
Obtained improvements allow the analysis of the discrete
dynamics of the process model, and the control decisions
can be evaluated. However, some problems related to the
resources discrete models were found.

5. Conclusions and future work.

The results of the application of the proposed method
show improvements in control simplicity, and a better
performance when a FMS is modelled, simulated and
designed in its control strategy. The intelligent control
applied allows to the system self deterministic behaviour,
increasing its adjusting and fault tolerance.
Therefore, the method proposed a new extension of PN,
with a better link between the real FMS and the
intellligent control scheme. The project goals have been
fulfilled, and the complete environment is working in the
CIM-2000 of the Instituto Tecnológico de Puebla, where
the intelligent control system applied shows an improved
performance for the programmed activities.
The proposed method demonstrates the feasibility of the
application of novel control strategies, which can be
restricted by the use of discrete event models of process
using discrete state variables for the elements and devices.
The robustness and stability of the intelligent control
generated must be analysed in future projects.

Figure 12. Simulation

7. Acknowledges.

The authors want to express thanks to Dr. Dewi Jones and
the Instituto Tecnológico of Puebla laboratories, for their
valuable help. The present work was financially supported
by the Asociación Nacional de Universidades e
Instituciones de Educación Superior, the Consejo del

Sistema Nacional de Educación Tecnológica and the
Dirección General de Institutos Tecnológicos.

References
1. Shen W., Norrie D. H., Agent-Based Systems for

Intelligent Manufacturing: A State-of-the-Art Survey,
Knowledge and Information Systems, an International
Journal, 1(2), pp. 129-156, 1999.

2. Gregor E., A Universal Modeling Language, 21st
International Conference on Applications and Theory
of Petri Nets, Aarthus, Denmark, June 26-30, 2000.

3. Zhou M., Venkatesh, K., Modelling, Simulation and
Control of FMS.-A Petri Net approach, World
Scientific, 1999.

4. Zimmermann A., Modelling of Manufacturing Systems
and Production Routes using Colored Petri Nets, Int.
Proc. Of the 3rd IASTED, Int. Conf. On Robotics and
Manufacturing, Cancún, México, pp. 380-383, 1995.

5. Woi L. A., Bundel G. A., Analysis of a flexible
manufacturing system task controller software model
using hierarchical timed Petri Nets, Information
systems engineering research group, University of
Western Australia, 1999.

6. Van der Aalst, Modelling and Analysis of Production
systems using a Petri Net based approach, Eindhoven
University of Technology,The Netherlands, 1998.

7. Aguado B. A., Temas de Identificación y Control
Adaptable, ICIMAF, La Habana, Cuba, 2000.

8. Salapura V., Hamann V., Implementing Fuzzy Control
Systems using VHDL and Statecharts, Technische
Universitat Wien,Austria, 2001

9. Gupta P., Hardware-Software codesign, IEEE
Potentials,December 2001/2002.

10.Bundell G. A., An fpga Implementation of the Petri net
Firing Algorithm, Information Systems Enginnering
group, University of Western Australia, 2000.

11.Torres G. H. H., Análisis y modelado de un sistema de
manufactura flexible usando redes de Petri Jerárquico
Temporizadas, MSc. Thesis, Instituto Tecnológico de
Puebla, 2003.

12. C. Gracios, G. Muñoz, J. Estévez and S. Torres,
“Neuro-PID control system with gravity
compensation,” Proc. 3rd IEEE Intl. Symp. on
Robotics and Automation, Toluca, Edo. Mex., 2002.

13. Jiang Ch., Zheng Y., Fuzzy Reasoning Based On Petri
Nets, IEEE.

14. T. Ojala, “Neuro-Fuzzy Systems for Control,” MSc.
Thesis, Tampere Technical University, Finland, 1995

15 R. Myong-Gyun and H. Sang-Eun, “Control and
Monitoring of Factory Automation System using
Fuzzy Petri Nets,” IEEE, Int. Symp. on Industrial
Electronics, Pusan, Korea, 2001

16. P. Dadone, “Fuzzy Control of Flexible Manufacturing
Systems,” MSc. Thesis, Blacksburg, VA, 1997.

17. P. Chen and K. Forward, “Fuzzy Petri Nets,” 1st Int.
Conf. On Knowledge-Based Intelligent Electronic
Systems, Adelaide, Australia, 1997

