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Abstract 
 
A new Petri net extension and a novel method describing 
the structure and behaviour of an Intelligent 
Manufacturing System (IMS), using a VHDL tool, is 
proposed. The PN extension is defined as Fuzzy Neural 
Real Time Petri Net (FNRTPN), where the fuzzy part let 
the intelligent scheduling of the tasks for the IMS, and the 
neural part calculates the estimation of the parameters of 
the set point for each resource in the system. At last, 
VHDL is proposed as a Unified Modelling Language 
(UML) to express the model of the manufacturing 
process. The extension and VHDL are used to apply a 
fuzzy neural control scheme to a FMS. 
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1. Introduction 
 
The design, modelling, simulation, fault analysis and 
control of Flexible Manufacturing Systems, have 
interested in the last 30 years to academic and industrial 
communities. Despite several solutions have been 
proposed, the actual requirements of the manufacturing 
systems, implying the insertion of intelligence in the 
elements and devices included in the process [15]. In that 
way, the active interaction of the human with software 
and hardware, agility, fault tolerance and the adaptability 
in general, are decisive characteristics that any intelligent 
manufacturing system should satisfy [1]. Therefore, the 
new methods and tools for design, simulation and control, 
must include a unified modelling language that establish a 
direct translation between the parameters of the process 
and the different strategies of intelligent control. 
The present work begins with a brief description of the 
state of the art for modelling, simulation and control of 
FMS, where Real Time Petri nets are modified to 
introduce a new extension of PN, and strategies for 
intelligent control applied in manufacturing systems. 
After that, fundamental theorems for the new Petri nets 

extension are expressed. Finally, an example of 
modelling, simulation and control of an Intelligent 
Transportation, into an IMS, is described. VHDL will be 
used for the modelling and control of the IMS, to show 
the requirements improvement in an actual manufacturing 
process. 
 
2. Petri Nets Definitions 
 
2.1 Real Time PN model. 
 
Nowadays, Petri nets have been used as an option for 
modelling, simulation, analysis and control for 
manufacturing systems. According to of Venkatesh et al 
[2], Real Time Petri Nets (RTPN) not only models the 
manufacturing process, but obtains the direct digital 
control system, described by a Ladder Logic Diagram 
(LLD). 
A RTPN can be obtained by associating timing, and I/O 
(input/output) set of information to the untimed PN,, and 
it can be defined as: 
   

RTPN={P, T, I, O, m, D, X, Y} 
 
where:   
   
P = {p1, p2,..., pm} is a finite set of places;   
T = {t1, t2,..., tn} is a finite set of transitions with P∪T = 0 
and P∩T = 0;   
I: P x TÆ N is an input function that defines the set of 
directed arcs from P to T where N = {1, 2,...};   
O: P x TÆ N is an output function that defines the set of 
directed arcs from T to P;   
mi: PÆ N, is a marking vector whose ith component 
represents the number of tokens in the ith place. An initial 
marking vector is denoted by m0;   
D: TÆ R+, is a firing time function where R+ is the set of 
non-negative real numbers;   
X: PÆ {-, 0, 1, 2,..., K} and X (pi )≠X(pj), i≠j, is an input 
signal function, where K is the maximum number of input 
signal channels, and " -" is the dummy attribute indicating 
no assigned channel to the place. (See figure 1). 
Y: TÆ L, is an output signal function, and L is a set of 
integers.   
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Figure 1. Input and output vectors in RTPN extension 
 
RTPN properties.   
   
1.  Timing vector (D) is intended to associate time delays 

to transitions modelling the activities in the system.   
2.  Input signal vector (X) reads the state of the input 

signals from digital input interface. X associates 
attributes to every place. Xi = X (pi), where pi 
represents the number of channels (bits) of the input 
pi. The contents of any Xi are either 0 or 1.   

3. Output signal vector (Y) is intended to send output 
signals through digital output interface. Y associates 
attribute to every transition. Yi = Y (ti) is the attribute 
associated to transition ti which represents the number 
that is to be sent to the digital output interface.  

While the program is executed, RTPN writes the decimal 
number corresponding to the output channel to digital 
output interface when a transition is fired. 
Using the X y Y vectors, a new extension, based on the                                                                                                                                                                                                                                                                                                                                                                                  
inclusion of decision strategy by intelligent control, and 
the parameter acquisition of the process for the regulation 
the best estimation can be obtained by using a neural 
network with back propagation training. 
In addition, a new variation for hardware description 
languages, using direct translation for the control 
expressed in a ladder logic diagram, is available. That 
new alternative compacts the design and development for 
the intelligent control in a programmable device, which 
can be applied at the process modelled [3, 4]. 
 
2.2 The Fuzzy Neural RTPN model 
 
Several contributions on the application of intelligent 
control to solve specific problems can found in recent 
literature. Some propositions, based on intelligent control 
strategies, allow the timing, sequencing and scheduling of 
tasks, adding adaptability to process parameter variations, 
such that velocity, position and used materials [5, 6]. 
Fuzzy logic, neural networks (NN), genetic algorithms 
and hybrid systems are actually applied in intelligent 
manufacturing system. In fact, fuzzy and neural networks 
are the most common structure used to control the 
activities, like robots, conveyor belts and CNC machines, 
of specific manufacturing process. Moreover, the 
inclusion of fuzzy and NN in PN definition to solve the 
short-term control, are included in recent works [16]. 
The present work describes a neurofuzzy control scheme, 
where neural part measures the signal error on the coupled 
sensors in each one for the regulation of the control 

parameters, and allows evaluating the task sequencing. 
Since a fuzzy task scheduler, which determinates the 
activation of resources according to disposability, can be 
defined, the goal of intelligent parameter adjusting of each 
resource of the process, based on previous fuzzy 
decisions, improves the adaptability. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. FNRTPN extension 
 
 
3. VHDL and Intelligent Control scheme 
 
Figure 2 shows the FNRTPN extension, where the Y 
channel add the fuzzy logical decision on the PN firing , 
which simulates the decision taken to activate the 
resources of the real process. The NN part is applied to 
estimate the condition of the resources using a back-
propagation scheme. Since the condition of the whole 
process is known, the availability of the resources and the 
firing decision of the tasks can be controlled. 
In order to include the fuzzy and NN schemes to the 
original definition of the RTPN, a two mapping function 
must be firstly defined. 
 If a new firing vector of the PN F is defined, restricted to 
the fact that scheduler knows the state of the places in any 
time of the evolution of the process. The definition of F 
requires a mapping to translate the fuzzy logical operation 
values of the scheduler into converted digital values for 
the original RTPN. That fuzzy scheme provides an 
intelligent firing procedure for one or more transitions to 
enable activities (places) of the resources modelled. In 
other words, F is indirectly mapped by the firing vector D 
to FIRE the change transition of the RTPN actual states.  
To evaluate the actual state activities, the neural part is 
connected to the X digital channel, which recognises the 
values of the sensors.  
Neural networks (NN) can be applied to adjust the 
parameters for a soft variation in a typical discrete PID 
control scheme [7]. However, the X channel is used to 
modify the condition of the transitions firing (enabling the 
activities). Since the output of the final neuron convert the 
real value of the sensor connected in the structure, to a 
fuzzy value which is evaluated for the scheduler to 
determine the actual condition of each recourse. 
Consequently, the NN identifies the actual values of the 
resources (position, velocity, pressure, etc) to be known 
by the scheduler to decide the next activity. Therefore, if 
Z= {z1, z2, …, zm} is the finite set of neurons connected to 
each X channel, Z: XÆ P, where the digital values of the 
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sensors are evaluated by the NN to refine the decision of 
the scheduler and the values to be adjusted in the actuators 
of each resource, and m is the number of places, 
indicating the status of all the resources. Therefore, the 
number of sensor must be connected to verify the actual 
condition of each resource. 
For the present work, a single-slide back-propagation 
neural network structure is proposed, because its 
efficiency in two-slides scheme [7, 12]. The neural 
scheme is shown in Figure 3. That structure will be only 
used in the auto tuning strategy for the discrete and 
analogue actuators of the resources. The final decision on 
the parameter values will depend on the scheduler. 

 

 
 

Figure 3.  Neural scheme 
 
 
3.1 VHDL description for FNRTPN 
 
VHDL is a suitable tool to describe and model DES by 
the structural and behavioural definitions in the entity and 
architecture schemes. Several authors propose VHDL to 
model structures of intelligent control, incorporating 
fuzzy, NN, or other kind of schemes applied in FMS for 
sequencing, scheduling and control.  
Using typical command description for discrete systems, a 
good level definition can be obtained to describe the 
structure and behaviour of the FNRTPN model.  
 
3.2 Fuzzy Neural Control Scheme  
 
The use of a hardware description language is proposed as 
a tool of simulation and analysis for the FNRTPN model 
to develop a neurofuzzy control scheme to be applied in 
the real process. VHDL allows a concurrent design, which 
uses a unified modelling language with a unique database, 
generated and addressed at any step of the method. 
Despite VHDL is mainly used in the design of complex 
digital circuits, it can be used in FNRTPN to describe 
processes like DES. Al last, the simulation, analysis and 
design of the control can be evaluated using a typical 
discrete event evolution diagram, where transition signals 
express the discrete behaviour of the process in terms of 
the scheduling, timing and sequencing of task. 
If the simulation and analysis have been exhaustively 
realised without find problems in feasibility, the next step 
for the synthesis of the intelligent control can be made. 

Using the report generated for VHDL tool, an Inverse 
Logistic Algorithm (ILA) can be proposed to obtain the 
structure of the control scheduler. Therefore, the fuzzy 
vector F, and the neural set NN allows the interconnection 
between the real process and the intelligent control 
scheme (See figure 2). 
The structure and design for the scheduler was proposed 
by Salapura [8], where the fuzzifier, the defuzzifier, the 
set of rules and the inference machine are coded in 
VHDL. Moreover, the behavioural information is 
obtained by the ILA algorithm applied to the FNRTPN 
model of the process. 
 
The ILA procedure is as follows: 
 
Each ti (process) is marked as pj  (FNCS) 
Each  pi (process) is marked as tj (FNCS) 
I ÅÆ O for each state in the structure of the FNRTPN 
A(FNCS) = A-1(process) 
Evolutionary method (Dadone) 
ASM description for the structure and behavioural 
obtained. 
Coupling step between the CORE defined for typical 
resources restricted for CADYC method proposed and the 
ASM description. 
Definition in VHDL. 
Testing until complete satisfaction. 
 
That algorithm is based on the scheme suggested by 
Dadone in 1997 [16], where an evolutionary programming 
method is presented. The method offers improvements in 
the use of VHDL, as a unified modelling language, for all 
the steps required in control schemes if the process is 
always described like a DES, and the control strategy is 
implemented in a programmable device. 

 
Figure 5. System to be modelled 

 
4. An Example – Intelligent transport 
 
Figure 5 shows the layout of the Transport system, which 
is a part of a FMS analysed in Instituto Tecnológico of 
Puebla. That system is used for distribution and inspection 
of the parts manufactured in the FMS. The neurofuzzy 
control scheme, allows an intelligent adjust for the 
process. Two MitsubishiTM 5 degrees of freedom robots 
are included as resources of manipulation of the pieces.  
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The first robot includes a camera vision for the detection 
of the pieces and the piece can be taken. Two conveyor 
belts (cv), driven by, servo motors are used for 
transportation. Additional sensors and actuators are 
included, as shown at Figure 6. 
 

Figura 6. Signals for the system 
 
Figure 6 is an extended layout of the system to be 
modelled and controlled, where the X and Y parameters 
for the FNRTPN are obtained. By using that information, 
the structure for the FNRTPN can be created. 
Figure 7 shows the the TAD of the transport system. The 
description is obtained by the application of Woi and 
Bundell method proposed in [5], and the tool developed in 
[11]. The ASM description and the FNRTPN model are 
obtained, and results are shown in Figures 8 y 9. 
The obtained ASM description describes the process task 
sequence and their conditional decisions, where intelligent 
control can be applied. Figure 9 shows the final FNRTPN 
model, where the specific tasks of the process are defined 
and the transitions are finite. Each transition receives a 
fuzzy channel fi for the scheduler, in order to choose the 
evolution and adequate sequencing, according to the 
estimated values of the system by the neural part. 
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Figure 9. FNRTPN model 
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Can be noticed similar transportation tasks for each type 
of piece, because they have been defined a priori in a 
VHDL CORE. The discrete model for the servomotors, 
cv’s and robot dynamics, were modelled using linear 
discrete state variable equations. The student version 
BASELINE 10.7 of ALTERATM was used, and the 
programming scheme was developed in C language for 
MS-DOSTM, using a NETLIST definition. Figure 10 
shows the synthetic structural and behavioural description 
for the FNRTPN model.  
The directive entity is used to define the input signals 
(fuzzy,) and output signals (neural), which are expressed 
in the PORT command, where all the resources allowed 
states, and fixed times assigned to specific tasks are given.  
Figure 11 shows the neurofuzzy control description 
obtained using the proposed method of ILA applied at the 
FNRTPN model, where the X and Y transposition can be 
observed and the D’s state are determined. 
Despite the direct neural control is defined a priori by the 
CORE, the final decision to change the PID parameters of 
the actuators resides on the scheduler. Similar values for 
the Neural PID were pre programmed and obtained as in 
[12] for the servo motors and the robots. To evaluate the 
performance of the FNRTPN and the real evolution of the 
system, a discrete simulation is showed in Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. VHDL description of the FNRTPN model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Partial VHDL description of the neurofuzzy 
control scheme (Part 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 12. Partial VHDL description of the neurofuzzy 
control scheme (Part 2) 

ENTITY intctrl IS 
PORT (robot2_ctrl,robot1_ctrl,start,cam_ctrl,cv_m_1,cv_m_2,paro,clk: OUT 

std_logic; 
cv_sensor1,cv_sensor2,robot1_sensors,robot2_sensors,act_states,cam_si
gnal: IN std_logic); 

END intctrl; 
 
ARCHITECTURE description OF intctrl IS 
-- Scheduler definition 
  CONSTANT finite_time: integer:=100; 
       
  TYPE decisiones IS (d1,d2,d3,d4,d5,d6); -- the logistic decisions 
  SIGNAL presente: decisiones:=d1; 
  SIGNAL robot2_ctrlaux,robot1_ctrlaux,camaux,centriaux: std_logic:=’0’; 
  SIGNAL tiempo: integer RANGE 0 TO 16#1FFFF# :=0; 
  SIGNAL subtiempo: integer RANGE 0 TO 1023 :=0; 
SIGNAL aux_param: integer RANGE 0 to 256:=0 –for a byte word lenght 
BEGIN 
  intctrl: 
  PROCESS(act_states) 
  BEGIN 
    IF act_states="101001" THEN 
      CASE presente IS 
      WHEN d1=> -- the set of rules 
  clk<='1'; 
        IF cv_sensor1='0' THEN presente<=d2; END IF; 
  IF cv_sensor2='0' THEN presente<=d6; END IF; 
        cv_m_1<='0'; cv_m_2<='0'; robot1_ctrl<='0';robot2_ctrl<='0'; 
        tiempo<=0; 
        subtiempo<=0; 
      WHEN d2=> 
        robot1_sensors<='0'; 
        IF cam_signal='0' THEN cam_ctrl<='1'; 
        ELSE  fuzzifier(paro); 
        END IF; 
        ...       
      END CASE; 
    END IF; 
  END PROCESS ctrl; 
   

ENTITY fms1 IS 
PORT( 
robot2_ctrl,robot1_ctrl,start,cam_ctrl,cv_m_1,cv_m_2, 
paro,clk: IN std_logic; 
cv_sensor1,cv_sensor2,robot1_sensors,robot2_sensors, 
act_states,cam_signal: OUT std_logic); 

END fms1; 
 
ARCHITECTURE description OF fms1 IS 
-- Aquí se asignan tiempos a cada transición: 
  CONSTANT T1: integer:=1;      -- Estos tiempos han sido 

… 
  TYPE estados IS (p11,p12,p13,p14,p15,p16); -- Def. de estados  
  SIGNAL presente: estados:=p1; 
  SIGNAL robot2_ctrlaux,camaux,robot1_ctrlaux: std_logic:='0'; 
  SIGNAL tiempo: integer RANGE 0 TO 16#1FFFF# :=0; 
  SIGNAL subtiempo: integer RANGE 0 TO 1023 :=0; 
BEGIN 
  fms: 
  PROCESS(clk) 
  BEGIN 
    IF clk='1' THEN 
      CASE presente IS 
      WHEN p1=> 
        IF start='11' THEN presente<=p12; END IF; 
  IF paro='1' THEN presente<=p16;  

END IF; 
        cv_sensor1<='0'; cv_sensor2<='0'; robot1_sensors<='1'; 
        act_states<='0'; robot2_sensors<='0'; camaux<='0'; 
        tiempo<=0; 
        subtiempo<=0; 
      WHEN p12=> 
        robot1_sensors<='0'; 
        IF cam_ctrl='0' THEN cv_sensor1<='1'; 
         
 …-- Continua descripcion 
  
      END CASE; 
    END IF; 
  END PROCESS fms; 
   
  PROCESS(robot1_ctrl) 
  BEGIN 
    IF robot1_ctrl='1' THEN robot1_ctrlaux<=NOT robot1_ctrlaux;  
   
 END IF; 
  END PROCESS; 

 PROCESS(robot1_sensors) 
  BEGIN 
    IF robot1_sensors='1' THEN centriaux<=NOT centriaux;  
   
 END IF; 
  END PROCESS; 
 
  PROCESS(cv_sensor1) 
  BEGIN 
    IF robot2_ctrl='1' THEN robot2_ctrlaux<=NOT robot2_ctrlaux;  
   
 END IF; 
  END PROCESS; 
 
  PROCESS(fuzzifier[aux_param]) 
  BEGIN 
    Signal in_var:INTEGER 0 to 256:=0; 
 
BEGIN 
In_var< = aux_param; 
 IF reset = ’1’ THEN 
memb_var <= (Others => ’ 0 ’); --All the bits are set to zero 
ELSIF clock’EVENT and (clock = ’1’) THEN 
          IF (in_var <tm1m) THEN 
                 tmp := conv_std_logic_vector(unsigned(unsigned(in_var) - 
                     unsigned(start))*unsigned(delta), 8); 
   memb_var(7 downto 0) <= tmp; 
                    memb_var (set_nr*8-1 downto 8) <= (Others => ’0’); 
          ELSIF (in_var <tm2m) THEN 
  tmp := conv_std_logic_vector(unsigned(unsigned(in_var) - 
                        unsigned(tm1m))*unsigned(delta), 8); 
 memb_var(7 downto 0) <= conv_std_logic_vector(1-
unsigned(tmp),8); 
 memb_var(15 downto 8) <= tmp; 
 memb_var (set_nr*8-1 downto 16) <= (Others => ’0’); 
 ELSIF (in_var < tm3m) THEN 
  ... 
END PROCESS; 
END IF; 
 END PROCESS; 
END description; 
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The adequate evolution between the real performance of 
the FMS and the control decisiones of the scheme 
obtained by our method can be noticed. The evolution of 
the real system was evaluated in other environments like 
ARENATM, OOPN tools, but the observance of the model 
and the control in the same platform, was hard to realize. 
Obtained improvements allow the analysis of the discrete 
dynamics of the process model, and the control decisions 
can be evaluated. However, some problems related to the 
resources discrete models were found. 
 
5. Conclusions and future work. 
 
The results of the application of the proposed method 
show improvements in control simplicity, and a better 
performance when a FMS is modelled, simulated and 
designed in its control strategy. The intelligent control 
applied allows to the system self deterministic behaviour, 
increasing its adjusting and fault tolerance. 
Therefore, the method proposed a new extension of PN, 
with a better link between the real FMS and the 
intellligent control scheme. The project goals have been 
fulfilled, and the complete environment is working in the 
CIM-2000 of the Instituto Tecnológico de Puebla, where 
the intelligent control system applied shows an improved 
performance for the programmed activities.  
The proposed method demonstrates the feasibility of the 
application of novel control strategies, which can be 
restricted by the use of discrete event models of process 
using discrete state variables for the elements and devices. 
The robustness and stability of the intelligent control 
generated must be analysed in future projects. 
 

 
 

 
 

Figure 12. Simulation 
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