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Abstract. In this work it is shown the design of a neuro PD control  with gravity compensation for 
the generation of leg trajectories of a six-legged robot. The paper is divided in three parts. In the first 
part the dynamic model for the robot’s leg is introduced, the second part shows the control law 
designed by considering the gravity effect and the dynamic parameters, finally in the third part we 
discuss the experimental results obtained by computer simulation. 
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1. INTRODUCTION 
The design of the control system in a walking 
robot plays an important role for efficient walking 
manner. Several problems have to be solved to 
obtain  an automatic locomotion behavior. Some 
of these problems are the stability control during 
the walking process, the working space restriction 
to avoid crashing impacts between legs or body, 
the force distribution in the robot and the adaptable 
way to walk on different terrains. At the time, 
several ways exist to make easy the walking 
locomotion with a kind of adaptability but more 
research is needed.  

 
Fig.  1. Configuration of the walking robot. 

We focus our attention in the validation of a PD 
control law considering the gravity effect of the 

legs as a way to increase the locomotion speed and 
reduce the energy consumption. A neural 
component is included aimed to add some 
adaptability capacity to the control scheme.  Figure 
1 shows the robot design; the morphology of the 
robot is similar to the given in  [1].  
 

2.  DYNAMIC MODEL OF THE LEG 
The design of the control law is based in the 
dynamic model of the robot’s leg. Each leg of the 
robot consists of a basic configuration of three 
degrees of freedom as is shown in figure 2. The 
variables and parameters that conform the 
mathematical model of the robot are the following: 
θ1, θ2, θ3 are the relative angles between the links, 
which  are independent; l2 and l3 are the effective 
longitude for the link 2 and link 3;  m1, m2, m3  and 
J1, J2 and J3 are the mass and the inertia for link 1, 
link2 and link3, respectively.  
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Fig.  2. Parameter and variables used in the leg 

modelling. 

 
We consider each link, as a rigid body. From and 
energetic point of view, the Lagrange technique is 
used to obtain the dynamic model for the legs. 
Equation 1 is a fundamental relationship between 
internal and external energy. K represents the 
kinetic energy of the mechanical system and U 
represents the potential energy. 
                           

                                                          (1) UKL −=
 
Equation 2 is the fundamental relationship to 
determine the external torque for each generalized 
coordinate. 
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The mathematical dynamic model for the legs is 
expressed by equation 3, the system can be 
reasonably represented as a second order 
differential equation.  
 
 

..
0bb

b0b
000

aa0
aa0

00a

2
3

2
2

2
1

3231

2321

3

2

1

3332

2322

11
+



















θ

θ

θ
















+

















θ
θ
θ

















&

&

&

&&

&&

&&

 

 

















τ
τ
τ

=































+

















θθ
θθ
θθ
















+

3

2

1

3

2

1

33

2322

32

31

21

33

2321

1211

gm
gm
gm

f00
ff0
000

c00
c0c
0cc

&&

&&

&&

                   

                                                                           (3) 
 
where: 

33332

323232332

323232323

3322222

3
22

33323232
22

23111

Jml
4
1

)coscossen(senllm
2
1

)coscossen(senllm
2
1

lml
4
1J

coslm
4
1coscosllm

2
1 coslm J

+=

+=

+=

++=

+++=

a

a

a

ma

a

θθθθ

θθθθ

θθθθ

(4) 

                                                                  

)coscossen(senllm
2
1

2sen
2
1-sencosl(lm

2
1b

)sencos-cos(senllm
2
1

sencosllm
4
1-)sen2msen2(ml

2
1-

323232332

33223331

323232323

233232322
2
221

θθθθ

θθθ

θθθθ

θθθθ

+=

=

=

+=

b

b

b

        (5) 

                                                        
The Coriolis and centrifugal terms are defined by 
the conjunction of square angular velocity effect 
and the multiple coordination of the angular 
velocities for each generalized coordinate. 
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Coefficients fij are the terms for the gravity effect 
of the masses. 
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The numeric values used in the  simulation of the 
model can be seen in the Table I 
 

TABLE I  
m1 0.0326 Kg. J1 1.95x10-3Kgm2 
m2 0.0726 Kg. J2 2.95x10-3 Kgm2 
m3 0.0653 Kg. J3 1.95x10-3 Kgm2 
l1 0  m ξ1 0.03 
l2 0.12 m ξ2 0.04 
l3 0.24 m ξ3 0.02 
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3. Dynamic Control of the Robot’s Leg 
Once constructed the dynamic model of the leg, 
we can accomplish a simulation study that will 
illustrate the behavior of the system. We focus our 
attention to make the study considering  the system 
torques of each joint as the inputs  and the joint 
angles and velocities as the outputs of the model.  
In order to describe the position of each leg in a 
cartesian coordinate frame, a cinematic model to 
transform the robot positions to cartesian positions 
(X,Y,Z) was used.  On the other hand, we design a 
control law which uses the angle joints errors to 
calculate the torques which must be applied to 
each joint actuator, and then evaluate the dynamic 
model to get new angles for the joints. Figure 3 
shows the block diagram of the control law, this 
scheme is well known as control with gravity 
compensation which is represented by  C(g) [2].  
  
 

 
Fig. 3. Block diagram of the control law. 

 
The control algorithm used to move a leg in the 
simulations was a PD control law, which requires, 
as it is known, to tune two constants by each 
degree of freedom, proportional gain K and the 
derivative gain Kd.  In our intention to control the 
position and velocity of each joint, we must tune a 
total of 12 variables. 
 
 

TABLE II 
PD CONTROL CONSTANTS FOR POSITION 

CONTROL 
Constants  K1 K2 K3 Kd1 Kd2 Kd3 
Value 0.06 0.09 0.2 0.009 0.6 0.01 

 
 
 
 

TABLE III 
PD CONTROL CONSTANTS FOR VELOCITY 

CONTROL 

Constant   K1 K2 K3 Kd1 Kd2 Kd3 
Value 0.04 0.9 0.17 0.001 0.02 0.02 

 
 
In tables II and III, values of proportional and 
derivative gains for the cases of leg’s position and 
velocity control which were the best  obtained by 
trial an error in the simulation study, are shown. 
Position and velocity must follow trajectories 
generated by the respective trajectory generators. 
 
As will be seen in figures 7 to 12, those values of 
the control constants guarantee  that the the angle 
positions move relatively smoothly until arriving 
at the wished trajectories even when some 
oscilations are observed, specially in the third 
joint.  However, the tracking of velocity 
trajectories is very deficiently achieved, in fact, big 
deviations of desired trajectoires can be observed.   
 
To improve the performance of the PD controller, 
adding  an adaptive component which can cope 
with the external disturbances, the multivariable 
essence and the strong nonlinearities of the robot, 
we propose a neural component which can correct 
in real time the values of the proportional and 
derivative gain coefficients.  In the next section, 
the derivation of the neural correction algorithm 
will be presented. 
 
 
4. Neuro-PD algorithm  
In figure IV, an scheme of the neuro-PD controller 
is presented. In the sake of clarity, only two nets 
are depicted, even when 6 will be requiered for 
every leg, one for each gain coefficiente (3 for 
proportional and 3 for derivative constants). 
 
The neural nets are of the perceptron type, with a 
hidden layer which has only a neuron with a 
sigmoid activation function. The output layer is 
linear and has also a single neuron. The outputs of 
the nets are respectively ∆Kp and ∆Kv, that is the 
increments of proportional and derivative gains. 
The inputs of all the neuronal networks are the 
output errors and their first differences, that is: 

[ ])t(e∆)t(e)t(x pp=                       (8) 
where 

)t(θ)t(θ)t(e dp −=                        (9) 
represents the errors in the joints angles.   
 
 The neural networks  are trained by means of 
special backpropagation algorithm which will be 
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developed in detail for the case of proportional 
gain changes. The derivative constants 
modifications can be obtained in a similar way. 
 
The objective function that must be minimized by 
means of the neural nets is the quadratic function:    

)t(e
2
1)t(E 2

p∑=                                   (10) 

 
 

 
Figure  4 Neuro PD control structure. 

The joint angles θ(t) are related with the input 
torques by means of a supposed unknown non-
linear dynamic model that we denote by: 

))t(τ(R)t(θ =                                  (11)                       

As can be seen, in  (20) and (21) it appears the 

partial derivative 
τ
θ

∂
∂

, which can not be evaluated 

under the assumption that the robot model is not 
precisely known. Even in the case that we dispose 
of a precise model, the evaluation would be very 
time consumming for real time realization of this 
algorithm. As it was shown in [ 7]  and [8], under 
some not very restrictive conditions, that partial 
derivative, also known as the Jacobian or 
equivalent gain of the process under control, can 
be substituted by its sign. Then, equations (20) and 
(21) can be simplified to: 

The torques calculated by the controller are:  
)t(ek)t(ek)t(τ vvpp +=                       (12) 

The proportional gain will change as follows: 
ppp k∆kk +=                               (13) 

vhk∆ p =                                    (14) 
where v  is the weight coefficient which connect 
the hidden with the output neuron and h is the 
output of the hidden neuron. 
The inputs to the neurons of the hidden layer are  

)t(e∆w)t(ews p2p1 +=                       (15) 
The activation function of the hidden neuron is: 

se1
1h

−+
=                                  (16) 

To apply the back propagation algorithm it is 
necessary to calculate the gradient of the function 
Ep whit respect to the coefficient v and w, that is:  
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The partial derivatives which appear in equation 
(17) can be calculated by means of the chain rule 
of derivations, that is: 
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After the sustitution of the partial derivatives 
which appear in (18) and (19), we arrive to: 
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The function sign (R) is evaluated as +1 or –1 
depending on the sign of the relation between the 
angular position and the applied torque which can 
be considered, for the case of the robot, as allways 
positive. 
 
Equations (22) and (23) can be used to derive the 
adaptation equations for the weight coefficients of 
the neural net, w and v, using the steepest descent 
method as follows: 

)R(signh)t(eη)t(v)1t(v 2
p11 +=+            (24) 
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j1
2

pjj x)h1(hv)R(sign)t(eη)t(w)1t(w −+=+
(25) 

The adaptive equations (24) and (25) can be 
calculated easily in real time and serve to adapt the 
values of proportional coefficients Kp, using 
equations (13) and (14). A similar derivation can 
be used to find the adaptation equations for 
derivative coefficients Kd . 
 
The neural adaptive scheme can be used in a 
permanent way, which achieve succesive 
improvements of the control behavior.  
 
In tables IV and V are shown the proportional and 
derivative gains obtained after several simulations 
of the neuro PD control algorithm, parting from 
the values which appear in tables II and III 

 
TABLE IV 

PD CONTROL CONSTANTS FOR POSITION 
CONTROL OBTAINED WITH NEURO 
ADAPTATION 
 Constant  K1 K2 K3 Kd1 Kd2 Kd3 

Value 0.07 0.30 0.18 0.11 0.011 0.007 

 
TABLE V 

PD CONTROL CONSTANTS FOR VELOCITY 
CONTROL OBTAINED WITH NEURO 
ADAPTATION 
Constant  K1 K2 K3 Kd1 Kd2 Kd3 

Value 0.05 1.70 0.18 0.014 0.0
22 

0.0
23 

 
 
5. Trajectory for the Leg 
The primary target that is tried for the control 
proposed in this paper is to follow a trajectory for 
a leg step. This trajectory is parametrically 
designed, and it can change according to the type 
of land or application of the robot. Figure 5 shows 
a parabolic type trajectory motion for the leg, and 
Figure 6 shows a triangle trajectory [3][4] which is 
tipical of the movement of some animals. In our 
simulation study, however, it was used the 
parabolic trajectory due to its simplicity. In this 
case the equations for the three degrees of freedom 
in the leg are described by  th next equations  [5]: 
 
 
 
 

 
Fig. 5.  Parabolic trajectory motion. 

 
Fig. 6. Triangle trajectory motion. 

                                       (26) 
)1ξ(cosχAχdθ
)1ξ(cosβAβdθ

)1ξ(cosγAγdθ

3

2

1

−−=
−−=

−−=

where dγ, dβ, dχ are the initial values of angles  
θ1,θ2,θ3, respectively. Those values fix the initial 
position of the leg in the space. Variable  Aγ  
defines the step lenght and Aβ, Aχ, define the 
robot  leg height;  ξ is an angle which takes values 
between 0 and π. 
 
In equation 27, we show the values considering the 
dimensions that are required in the generation of 
steps for the walking robot of six legs. 
 

                                              (27) 
10χA310χd
15βA4βd
20γA70γd

==
==
==

 
 
6. Simulation Results 
After determining the type of movement and the 
dynamic control law, we evaluate the leg step by 
analyzing the motion of each degree of freedom. 
 
One of the considerations we did in our 
experiments was to generate smooth movements at 
the beginning and the end of the trajectory, as is 
shown in Figure 7 for angle θ1.  
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 In the figures 7 to 12, the desired position and 
velocity trajectories and those obtained with PD 
and neuro PD control are shown. As can be seen, 
for coordinate 2 and 3, the behavior obtained with  
the neuro PD is substantially improved, specially 
for the velocity trajectories where  the oscillations 
are supressed and the errors are considerably 
diminished.    
 

 
Fig.  7. Position trajectory for the first degree. 

 

 
Fig. 8. Position trajectory for the second degree. 

 

 
Fig. 9. Position trajectory for the third degree. 

 
The leg step is constructed by using the 
simultaneous movements of θ1 , θ2 and θ3. In 
Figure 13 are shown, projected in a plane, the 
desired and real step trajectories obtained with PD 
and neuro-PD controllers. For this step generation 
we simulate the altitude and step distance made for 
the leg, which is essential information to design 
algorithms oriented to adapt the step to the terrain, 
according with the legs positions. 

 

Fig. 10  Velocity trajectory  for the first degree.   
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Fig. 11 Velocity trajectory  for the second degree. 

     

 
Fig. 12 Velocity trajectory  for the third degree 

 
 
 

 
Fig. 13. Step trajectory generation. 

 
 

 

6. Conclusions and Future Work 
The dynamic model described for a leg of a six-
legged robot is a highly nonlinear system, 
obviously this complicate the design of the control 
system; however a PD control with gravity 
compensation was designed with satisfactory 
results. A series of preliminary trajectories were 
evaluated by simulation, considering a parametric 
mathematical model to facilitate the walking 
adaptation for the leg. We could use the 
coefficients of the tables 2 and 3 to help us for the 
design of a walking generator algorithm. We 
continue this research by considering an intelligent 
algorithm which includes six simple neural nets for 
each leg which permit the adaptation of PD 
coefficients and to improve the performance of the 
robot.  In the future, it is necessary also to research 
about the flexibility of the working space area for 
the legs which cause that the mobility of the robot 
can be increased substantially. The determination 
of the mobility for the robot and the stability 
evaluation is possible by using a 3D graphic 
simulator that is under construction. 
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