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Abstract. In this work it is shown the design of a neuro PD control with gravity compensation for
the generation of leg trajectories of a six-legged robot. The paper is divided in three parts. In the first
part the dynamic model for the robot’s leg is introduced, the second part shows the control law
designed by considering the gravity effect and the dynamic parameters, finally in the third part we
discuss the experimental results obtained by computer simulation.
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1. INTRODUCTION

The design of the control system in a walking
robot plays an important role for efficient walking
manner. Several problems have to be solved to
obtain an automatic locomotion behavior. Some
of these problems are the stability control during
the walking process, the working space restriction
to avoid crashing impacts between legs or body,
the force distribution in the robot and the adaptable
way to walk on different terrains. At the time,
several ways exist to make easy the walking
locomotion with a kind of adaptability but more
research is needed.

Fig. 1. Configuration of the walking robot.

We focus our attention in the validation of a PD
control law considering the gravity effect of the

legs as a way to increase the locomotion speed and
reduce the energy consumption. A neural
component is included aimed to add some
adaptability capacity to the control scheme. Figure
1 shows the robot design; the morphology of the
robot is similar to the given in [1].

2. DYNAMIC MODEL OF THE LEG

The design of the control law is based in the
dynamic model of the robot’s leg. Each leg of the
robot consists of a basic configuration of three
degrees of freedom as is shown in figure 2. The
variables and parameters that conform the
mathematical model of the robot are the following:
0,, 0,, 05 are the relative angles between the links,
which are independent; 1, and 1; are the effective
longitude for the link 2 and link 3; m;, m,, m; and
J1, J2 and J3 are the mass and the inertia for link 1,
link2 and link3, respectively.



Fig. 2. Parameter and variables used in the leg
modelling.

We consider each link, as a rigid body. From and
energetic point of view, the Lagrange technique is
used to obtain the dynamic model for the legs.
Equation 1 is a fundamental relationship between
internal and external energy. K represents the
kinetic energy of the mechanical system and U
represents the potential energy.

L=K-U (1)

Equation 2 is the fundamental relationship to
determine the external torque for each generalized
coordinate.
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The mathematical dynamic model for the legs is
expressed by equation 3, the system can be
reasonably represented as a second order
differential equation.
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The Coriolis and centrifugal terms are defined by
the conjunction of square angular velocity effect
and the multiple coordination of the angular
velocities for each generalized coordinate.
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Coefficients fij are the terms for the gravity effect
of the masses.
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The numeric values used in the simulation of the
model can be seen in the Table 1

TABLEI
m; | 0.0326Kg. | I,
m,| 0.0726Kg. | I, 2.95x10”° Kgm®
m;| 0.0653Kg. | I, 1.95x10”° Kgm®
1, 0 m £ 0.03
L| 012m £ 0.04
| 024m £ 0.02

1.95x10°Kgm’




3. Dynamic Control of the Robot’s Leg

Once constructed the dynamic model of the leg,
we can accomplish a simulation study that will
illustrate the behavior of the system. We focus our
attention to make the study considering the system
torques of each joint as the inputs and the joint
angles and velocities as the outputs of the model.
In order to describe the position of each leg in a
cartesian coordinate frame, a cinematic model to
transform the robot positions to cartesian positions
(X,Y,Z) was used. On the other hand, we design a
control law which uses the angle joints errors to
calculate the torques which must be applied to
each joint actuator, and then evaluate the dynamic
model to get new angles for the joints. Figure 3
shows the block diagram of the control law, this
scheme is well known as control with gravity
compensation which is represented by C(g) [2].
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Fig. 3. Block diagram of the control law.

The control algorithm used to move a leg in the
simulations was a PD control law, which requires,
as it is known, to tune two constants by each
degree of freedom, proportional gain K and the
derivative gain Kd. In our intention to control the
position and velocity of each joint, we must tune a
total of 12 variables.

TABLE II
PD CONTROL CONSTANTS FOR POSITION
CONTROL

Constant | K1 K2 |K3 Kdl1 Kd2 |[Kd3

Value 0.04(0.9(10.17|0.001|10.02|0.02

Constant{ K1 | K2 K3 |Kdl Kd2 | Kd3

Value |0.06[0.09[0.2[0.009(0.6]0.01

TABLE III
PD CONTROL CONSTANTS FOR VELOCITY
CONTROL

In tables II and III, values of proportional and
derivative gains for the cases of leg’s position and
velocity control which were the best obtained by
trial an error in the simulation study, are shown.
Position and velocity must follow trajectories
generated by the respective trajectory generators.

As will be seen in figures 7 to 12, those values of
the control constants guarantee that the the angle
positions move relatively smoothly until arriving
at the wished trajectories even when some
oscilations are observed, specially in the third
joint. However, the tracking of velocity
trajectories is very deficiently achieved, in fact, big
deviations of desired trajectoires can be observed.

To improve the performance of the PD controller,
adding an adaptive component which can cope
with the external disturbances, the multivariable
essence and the strong nonlinearities of the robot,
we propose a neural component which can correct
in real time the values of the proportional and
derivative gain coefficients. In the next section,
the derivation of the neural correction algorithm
will be presented.

4. Neuro-PD algorithm

In figure IV, an scheme of the neuro-PD controller
is presented. In the sake of clarity, only two nets
are depicted, even when 6 will be requiered for
every leg, one for each gain coefficiente (3 for
proportional and 3 for derivative constants).

The neural nets are of the perceptron type, with a
hidden layer which has only a neuron with a
sigmoid activation function. The output layer is
linear and has also a single neuron. The outputs of
the nets are respectively AK, and AK,, that is the
increments of proportional and derivative gains.
The inputs of all the neuronal networks are the
output errors and their first differences, that is:

x(0) = e, (1) Ay (1)] ®)
where
ep (1) =04(H)~6() ©)

represents the errors in the joints angles.

The neural networks are trained by means of
special backpropagation algorithm which will be




developed in detail for the case of proportional
gain  changes. The derivative constants
modifications can be obtained in a similar way.

The objective function that must be minimized by
means of the neural nets is the quadratic function:

E(t) = %Zeﬁ(t) (10)

Figure 4 Neuro PD control structure.

The joint angles O(t) are related with the input
torques by means of a supposed unknown non-
linear dynamic model that we denote by:

6(t) = R(z(t)) (11
The torques calculated by the controller are:
T(t) :kpep(t)+kvev(t) (12)
The proportional gain will change as follows:
kp =kp +Akp (13)
Akp =vh (14)

where v is the weight coefficient which connect
the hidden with the output neuron and h is the
output of the hidden neuron.

The inputs to the neurons of the hidden layer are

s=wie,(t) +wrAe, (t) (15)
The activation function of the hidden neuron is:
1
h= (16)
l+e”®

To apply the back propagation algorithm it is
necessary to calculate the gradient of the function
E, whit respect to the coefficient v and w, that is:
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8Vl
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The partial derivatives which appear in equation
(17) can be calculated by means of the chain rule
of derivations, that is:

OE() OE(t) Oep 00 ot OK, OAK,

(18)
ov, de, 0B ot 0K, OAK, ov,
aE(t)_aE(t)ae_p@ ot 0K, OAK,
ow; e, 0 Ot 9K, 0OAK, oh (19)
aAKp @ Bs
oh 0Os 8wj

After the sustitution of the partial derivatives
which appear in (18) and (19), we arrive to:
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As can be seen, in (20) and (21) it appears the
00
partial derivative a, which can not be evaluated

under the assumption that the robot model is not
precisely known. Even in the case that we dispose
of a precise model, the evaluation would be very
time consumming for real time realization of this
algorithm. As it was shown in [ 7] and [8], under
some not very restrictive conditions, that partial
derivative, also known as the Jacobian or
equivalent gain of the process under control, can
be substituted by its sign. Then, equations (20) and
(21) can be simplified to:

% (t)”h sign(R) (22)
— =—¢,(t sign
v, P s

8Ep 5 .

Wl =—¢,(t)"sign(R) vih(1-h)x; (23)
The function sign (R) is evaluated as +1 or —1
depending on the sign of the relation between the
angular position and the applied torque which can
be considered, for the case of the robot, as allways
positive.

Equations (22) and (23) can be used to derive the
adaptation equations for the weight coefficients of
the neural net, w and v, using the steepest descent
method as follows:

vi(t+1)=v;(t) +ne, (t)*hsign(R) (24)



wi(t+1D)=w;(t)+ne, (1:)2 sign(R) vih(1-h)x;

(25)
The adaptive equations (24) and (25) can be
calculated easily in real time and serve to adapt the
values of proportional coefficients Kp, using
equations (13) and (14). A similar derivation can
be used to find the adaptation equations for
derivative coefficients Ky .

The neural adaptive scheme can be used in a
permanent way, which achieve succesive
improvements of the control behavior.

In tables IV and V are shown the proportional and
derivative gains obtained after several simulations
of the neuro PD control algorithm, parting from
the values which appear in tables II and III

TABLE IV
PD CONTROL CONSTANTS FOR POSITION
CONTROL OBTAINED WITH NEURO
ADAPTATION

Constant | K1 K2 K3 Kdl | Kd2 Kd3

Value 0.0710.30(10.18(0.11]0.011 |0.007

TABLE V
PD CONTROL CONSTANTS FOR VELOCITY
CONTROL OBTAINED WITH NEURO

ADAPTATION

Constant K1 K2 K3 Kdl Kd2 | Kd3

Value 0.05(1.70 |0.18 [0.014 0.0 [0.0
22 23

5. Trajectory for the Leg

The primary target that is tried for the control
proposed in this paper is to follow a trajectory for
a leg step. This trajectory is parametrically
designed, and it can change according to the type
of land or application of the robot. Figure 5 shows
a parabolic type trajectory motion for the leg, and
Figure 6 shows a triangle trajectory [3][4] which is
tipical of the movement of some animals. In our
simulation study, however, it was used the
parabolic trajectory due to its simplicity. In this
case the equations for the three degrees of freedom
in the leg are described by th next equations [5]:

b4 06 08 1

Fig. 5. Parabolic trajectory motion.

Fig. 6. Triangle trajectory motion.
0, =dy—Ay(cos&-1)
0, = dp— AB(cos&—1) (26)
05 =dy —Ay(cosg—-1)
where dy, dB, dy are the initial values of angles
01,02,03, respectively. Those values fix the initial
position of the leg in the space. Variable Ay
defines the step lenght and AP, Ay, define the

robot leg height; & is an angle which takes values
between 0 and 7.

In equation 27, we show the values considering the
dimensions that are required in the generation of
steps for the walking robot of six legs.

dy=70 Ay=20
dp=4 AB=15 (27)
d( =310 Ayx=10

6. Simulation Results

After determining the type of movement and the
dynamic control law, we evaluate the leg step by
analyzing the motion of each degree of freedom.

One of the considerations we did in our
experiments was to generate smooth movements at
the beginning and the end of the trajectory, as is
shown in Figure 7 for angle 0.



In the figures 7 to 12, the desired position and
velocity trajectories and those obtained with PD
and neuro PD control are shown. As can be seen,
for coordinate 2 and 3, the behavior obtained with
the neuro PD is substantially improved, specially
for the velocity trajectories where the oscillations
are supressed and the errors are considerably
diminished.
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Fig. 8. Position trajectory for the second degree.

Fig. 9. Position trajectory for the third degree.

The leg step is constructed by using the
simultaneous movements of 6; , 6, and 6;. In
Figure 13 are shown, projected in a plane, the
desired and real step trajectories obtained with PD
and neuro-PD controllers. For this step generation
we simulate the altitude and step distance made for
the leg, which is essential information to design
algorithms oriented to adapt the step to the terrain,
according with the legs positions.
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Fig. 10 Velocity trajectory for the first degree.
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Fig. 11 Velocity trajectory for the second degree.
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Fig. 12 Velocity trajectory for the third degree
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Fig. 13. Step trajectory generation.

6. Conclusions and Future Work

The dynamic model described for a leg of a six-
legged robot is a highly nonlinear system,
obviously this complicate the design of the control
system; however a PD control with gravity
compensation was designed with satisfactory
results. A series of preliminary trajectories were
evaluated by simulation, considering a parametric
mathematical model to facilitate the walking
adaptation for the leg. We could use the
coefficients of the tables 2 and 3 to help us for the
design of a walking generator algorithm. We
continue this research by considering an intelligent
algorithm which includes six simple neural nets for
each leg which permit the adaptation of PD
coefficients and to improve the performance of the
robot. In the future, it is necessary also to research
about the flexibility of the working space area for
the legs which cause that the mobility of the robot
can be increased substantially. The determination
of the mobility for the robot and the stability
evaluation is possible by using a 3D graphic
simulator that is under construction.
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