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Abstract. Transform based profilometry has been widely used for three-
dimensional (3-D) surface shape measurement using a projected fringe pattern.
These methods require a single image with a sinusoidal fringe pattern projected
on it. The projected pattern has a known spatial frequency and its information is
used to avoid any discontinuities in the fringes with high frequency. Among
single projected fringe pattern, most of the methods use Fourier or Wavelet
transforms to extract the phase information. However, they focused only on the
transform method and not on the phase unwrapping algorithms. In this paper, a
1-D wavelet profilometry method is presented considering two different
wavelet transforms. Later, different phase unwrapping algorithms are used to
extract the depth information considering local and global analysis. Several
computer simulations and experiments are carried out to validate the proposed
method. The merits and limitations of each of these variations on the method
are indicated and the error is estimated.

Keywords: Phase unwrapping; depth estimation; algorithms; wavelet transform

1 Background

In order to extract the 3D information of an object, several contact and non-contact
measurement techniques have been employed. The main idea is to extract the useful
depth information from an image or set of images in an efficient and automatic way.
The result of the process (depth information) can be used to guide various tasks such
as synthetic aperture radar (SAR), magnetic resonance imaging (MRI), automatic
inspection, reverse engineering, 3D robot navigation, interferometry and so on [1].
The contact measurement techniques provide a better way to realize this process by
using a vision system together with a tool in contact with the object, like laser, fringe
projection and so on. Among all the diverse techniques, one of the most widely used
is the fringe projection. Fringe processing methods are widely used in non-destructive
testing, optical metrology and 3D reconstruction systems. Some of the desired
characteristics in these methods are high accuracy, noise-immunity and fast
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processing speed. The most known fringe processing methods are the Fourier
Transform Profilometry (FTP) method [2], Phase-shifting or phase stepping [3, 4],
digital phase locked loop [5], direct phase detection [6], and Wavelet Transform
Profilometry [12, 16]. Among all the methods, one of the main challenges is the
problem of wrapped phase information problem due to the fact that the phase of a
periodically varying intensity pattern is encoded or wrapped and it contains the depth
information of the object. The phase unwrapping problem has been attacked by
several researchers who have attempted to solve it in many ways. Historically, one of
the first algorithms to deal with this problem was proposed by Takeda and Mutoh in
1982 [2]. Later Berryman [7] and Pedraza [8, 17, 18] proposed a modified Fourier
Transform Profilometry by carrying out global and local analyses in the phase
unwrapping step. Then, unwrapping algorithms (temporal and spatial) were
introduced and modified [7-10]. Phase unwrapping techniques use exhaustive data
computations and approximations, however, these approaches have a small
contribution to understand the cause of failure in the phase unwrapping process. This
research presents an implementation of phase unwrapping algorithms, considering the
problem of residues.

Generally, most of the proposed methods used a Fourier Transform Profilometry,
and another suitable solution is to use the wavelet transform extract the information.

Wavelet transform offers multi-resolution in time and space frequency, and it is a
tool that offers advantages over the Fourier transform [9-10]. The computation in the
method can be carried out by analyzing the projected fringe patterns using a wavelet
transform. Mainly, this analysis consists of demodulating the deformed fringe patterns
and extracting the phase information encoded into it and hence the height profile of
the object can be calculated, quite similar to Fourier transform.

Different wavelet algorithms are used in the demodulation process to extract the
phase of the deformed fringe patterns. Those algorithms can be classified into two
categories: phase estimation and frequency estimation techniques. The phase
estimation algorithm employs complex mother wavelets, here, the extracted phase
suffers from 27 discontinuities and a phase unwrapping algorithm is required to
remove these 271 jumps. Zhong et al. [9] have applied Gabor wavelets to extract the
phase distribution where a phase unwrapping algorithm is required. The frequency
estimation technique estimates the instantaneous frequencies in a fringe pattern,
which are then integrated to estimate the phase. The phase extracted using this
technique is continuous; consequently, phase unwrapping algorithms are not required
for 2D Wavelet Profilometry. Complex or real mother wavelets can be used to
estimate the instantaneous frequencies in the fringe pattern. Dursun et al. [14] and
Afifi et al. [15] have used Morlet or Paul wavelets, separately, to obtain the phase
distribution of projected fringes. Also, Gdeisat et al. [16] have proposed a 1D
continuous wavelet transform approach to retrieve phase information in temporally
and spatially fringe patterns.

Most of the previous research is focused on using the Fourier and wavelet
transforms to obtain the 3D information from an object; pre-filtering the images,
extracting the phase information of fringe patterns, using phase unwrapping
algorithms, and so on.

In the present research, a comparison between two phase unwrapping algorithms is
presented in 1D Wavelet Profilometry is presented in order to obtain the 3D
information from an object. First, the spatial frequency of the projected fringe pattern
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is obtained; later the mathematical model is obtained and used together with the
spatial frequency in order to establish the problem. Then, a 1D Wavelet Profilometry
is applied considering the most suitable wavelets for the analysis. Later, three phase
unwrapping algorithms are used to obtain the desired 3D information. One
contribution of this research is the proposed methodology, because in previous works
there are no comparison among different phase unwrapping (PU) methods in 1D
Wavelet based profilometry. The results show that it’s suitable to compare the present
work with other similar researches. To test the method, some virtual objects were
created for use in computer simulations and also some experiments were carried out.

2 Profilometry Basics

As described early, there are several fringe projection techniques which are used to
extract the three-dimensional information from the objects. The two mostly used
techniques (Fourier Transform and Wavelet Profilometry) are presented.

2.1 Fourier Transform Profilometry (FTP)

The image of a projected fringe pattern and an object with projected fringes on it, as
shown on figure 3, can be represented by:

g(x,y)=a(x,y)+b(x,y) *cos[2* 7, x + ¢(x, y)] (1)
go(x,y)=a(x,y)+b(x,y)*cos[2*7f,x + @y (x, )] (2)

where g(x,y) and gy(x,y) are the intensities of the images at the point (x,y), a(x,y)
represents the background illumination, b(x,y) is the contrast between the light and
dark fringes, f;, is the spatial-carrier frequency and ¢(x,y) and @,(x,y) are the
corresponding phase to the fringe and distorted fringe pattern.

The phase ¢(x,y) contains the desired information. This angle ¢(x,y) is the phase
shift caused by the object surface end the angle of projection, and its expressed as:

Px, y) = @, (x, y) +¢.(x, ) (3)
where ¢y(x,y) is the reference plane projected phase angle, and ¢.(x,y) is the
object’s height distribution phase.
In Pedraza et al work [17, 18], the Equation 5 can be rewritten as:

h(x’ y)zﬂodo Zo¢z ()C, y)
D IET0T0 L p(x, y) =
-ty N ) - 2md, @

where the value of /(x,y) is measured and considered as positive to the left side of
the reference plane. Also, the Equation 4 expresses the height distribution as a
function of the phase distribution.

@.(x,y)=

The Equation 1 can be rewritten as:

g6 ) = S A,r(x, ) expling(x, y)) * exp(i2mify ) 5)

n=—co

where 1(x,y) is the reflectivity distribution on the diffuse object [3,4]. Then, a FFT
(Fast Fourier Transform) is applied to the signal in the x direction only. Thus, the
following equation is obtained:
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G(f.)=S0,(f —nfy.) ©)

where Q, is the 1D Fourier Transform of An exp[inp(x,y)].

Here ¢(x,y) and r(x,y) vary very slowly in comparison with the fringe spacing, then
the O peaks in the spectrum are separated from each other. It is also necessary to
consider that if a high spatial fringe pattern is chosen, the FFT will have a wider
spacing among the frequencies; this behavior helps to identify the fundamental peak
fo- In FTP, next step is to remove all signals but positive fundamental peak f). Then,
the result is shifted and centered. Later, the IFFT (Inverse Fast Fourier Transform) is
applied in the x direction only. Here, is necessary to separate the phase part of the
result from the rest because it contains the depth information:

0.(x,y)=@(x,y) + @, (x,y)
= Im{log(&(x, »)g, (x,¥))}

The whole phase map is obtained by applying the same procedure for each x line.
The result is that the values of the phase map are wrapped at some specific values
whose range lie between ® and -7t. Then, to recover the true phase it is necessary to
restore the measured wrapped phase by an unknown multiple of 27, [17]. However,
to analyze and describe signals, it requires information from both domains time and
frequency, therefore Fourier is not a suitable solution to express those signals and
another way is proposed, wavelet transform.

0

2.2 Wavelet Transform Profilometry

The wavelet transform (WT) is considered an appropriate tool to analyze non-
stationary signals. This technique has been developed as an alternative approach to
the most common transforms, such as Fourier transform, to analyze fringe patterns.
Furthermore, WT has a multi-resolution property in both time and frequency domains
which solves a commonly know problem in other transforms like the resolution.

A wavelet is a small wave of limited duration (this can be real or complex). For
this, two conditions must be satisfied: firstly, it must have a finite energy. Secondly,
the wavelet must have an average value of zero (admissibility condition). It is worth
noting that many different types of mother wavelets are available for phase evaluation
applications. The most suitable mother wavelet is probably the complex Morlet one
[2]. The Morlet wavelet is a plane wave modulated by a Gaussian function, and is
defined as:

w(x)=7"" explicx)expx* /2) (8)
where ¢ is a fixed spatial frequency, and chosen to be about 5 or 6 to satisfy an

admissibility condition [11]. Figure 1 shows the real part (dashed line) and the
imaginary part (solid line) of the Morlet wavelet.
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Figure 1. Mother Wavelets: (a) Complex Morlet and (b) Paul.

Also, Paul Wavelet is considered as one choice to perform the phase evaluation
and is defined as:

noNl—i —(n+l)
. _ 2"nl(1-ix) ©)

="
V2

where 7 is the order of the Paul mother wavelet and chosen to have the value of 5.

The one-dimensional continuous wavelet transform (1D-CWT) of a row f(x) of a
fringe pattern is obtained by translation on the x axis by b (with y fixed) and dilation
by s of the mother wavelet y(x) as given by:

X

W (s,b) =% Tf(x)l//* (;b)dx (10)

here, * denotes complex conjugation and W(s,b) is the calculated CWT coefficients
which refers to the closeness of the signal to the wavelet at a particular scale.

In this research, the phase estimation and frequency estimation methods are used to
extract the phase distribution from two dimensional fringe patterns. In the phase
estimation method, a complex Morlet and Paul wavelets will be applied to a row of
the fringe pattern. The resultant wavelet transform is a two dimensional complex
array, where the phase arrays can be calculated as follows:

abs(s,b) =W (s,b)| (11)
_ oot S (s, b)) (12)
@(s,b) =tan (‘K{W(s, b)}]

To compute the phase of the row, the maximum value of each column of the
modulus array is determined and then its corresponding phase value is found from the
phase array. By repeating this process on all rows of the fringe pattern, a wrapped
phase map results and an unwrapping algorithm is then needed to unwrap it.

In the frequency estimation method, a complex Morlet wavelet and Paul wavelet
are applied to a row of the fringe pattern. The resultant wavelet transform is a two
dimensional complex array. The modulus array can be found using Equation (14) and
hence the maximum value for each column and its corresponding scale value can be
determined. Considering that we are interested in the 1D signal:
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S (%) = a(x) +b(x)cos(27f,x + ¢(x)) (13)
Considering the Euler identity for cos(x), we can re-write the Equation 13 as:
ip(x) ~ip(x)
£(x) = a(x) + b(x) cos(@(x)) = a(x) + b(x) S b ¢ : (14)

The analytic function f'in an open interval A, where z, € 4 can be decomposed into
Taylor series:

oo (k) z
r@=3 ) ooz (1s)
Therefore: _
P00 = 00 + ¢ BN -0)+ L D (= + Doy 6)
If:
P(0) = P(B)+ ¢(0) = 0,9"(5) = 0, @"(B) =0, ¢'B)=0 ()

Then, the function can be reduced as:

P(x) = p(b) + ¢'(b)(x - b) (18)

x2

Moreover, the Morlet Wavelet is defined as ¥/(x) = ¢ e 2 | this wavelet will be

applied to the mother wavelet Jy/ (s, b) = 1 J.f(x)y/*(x - bjdx :
s 7 s

If s=1, then:
W(s,b)=1jf(x>w‘(x‘b]dx
s 7 s
- iotx —ip(x (19)
- j[a(x)w(x)ew( s )}y/*()‘_b}&
e 2 2 s

< (x—b b 2 ellewda-nl p =il oy
:a:'.‘/,[ s )dw+5:|. 2 Y175 dx+5,J- 2 s

oo

By solving Equation 19, the following equation is obtained:

_lw(% b —i(wo -‘Wv)z . b _l(mo_swv)z .
a~2xe ? +5«/2fre 2 e 'ob +E«/27‘[e 2 '@ (20)

Then the instantaneous frequencies are computed using the next Equation [11]:
- c+Alct+2
Jb)y=—————-27],
25,0 (D) 21
where f is the spatial frequency. At the end, the phase distribution can be extracted
by integrating the estimated frequencies.
The same procedure can be developed to get the instantaneous frequencies, which
lead us to have the wrapped phase and therefore it is necessary to apply a phase
unwrapping algorithm.
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3 Phase Unwrapping

Since two decades ago, phase unwrapping has been a research area and many
papers have been published, presenting some ideas that solves the problem. Several
phase unwrapping algorithms have been proposed, implemented and tested.

The phase unwrapping process is not a trivial problem due to the presence of phase
singularities (points in 2D, and lines in 3D) generated by local or global
undersampling. The correct 2D branch cut lines and 3D branch cut surfaces should be
placed where the gradient of the original phase distribution exceeded m rad value.
However, this important information is lost due to undersampling and cannot be
recovered from the sampled wrapped phase distribution alone. Also, is important to
notice that finding a proper surface, or obtaining a minimal area or using a gradient on
a wrapped phase will not work and one could not find the correct branch in cut
surfaces.

The phase unwrapping has many applications in applied optics that require an
unwrapping process, and hence many phase unwrapping algorithms has been
developed specifically for data with a particular application. Moreover, there is no
universal phase unwrapping algorithm that can solve wrapped phase data from any
application. Therefore, phase unwrapping algorithms are considered as a trade-off
problem between accuracy of solution and computational requirements. However,
even the most robust and complete phase unwrapping algorithm cannot guarantee in
giving successful or acceptable unwrapped results without a good set of initial
parameters. Unfortunately, there is no standard or technique to define the parameters
that guarantee a good performance on phase unwrapping.

To face the phase unwrapping problems, algorithms can be divided in two
categories: local and global phase unwrapping. Local phase unwrapping algorithms
find the unwrapped phase values by integrating the phase along a certain path. This is
called path-following algorithms [6].

Global phase unwrapping algorithms locate the unwrapped phase by
minimizing a global error function and are also called local phase unwrapping
algorithm and a global phase unwrapping algorithm, by following the methodology
proposed by Pedraza in [1]. The unwrapped phase values and the wrapped phase can
be related with each other as:

Y(n)=p(x)+2nk(n) —-z<¥Yn)<x (22)

o(n)=Y(n)+2xv(n) —oco<@(n)<oo (23)
here W(n) holds the wrapped phase values and @(n) holds the unwrapped phase
values, k(n) is the function containing the integers that must be added to the wrapped
phase ¢ to be unwrapped, » is an integer and v(n) is the function containing a set of
integers that must be added to the wrapped phase V.
Noting that;

v(n) = -k(n) (24)
The wrapping operation ® which converts the unwrapped phase is defined by:

w{qo(n)}:amta{m«mn»}

cos(¢(n)) (25)
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3.1 Local Phase unwrapping

Local phase unwrapping algorithms finds the unwrapped phase values by
integrating the phase along certain path that covers the whole wrapped phase map.
The local phase unwrapping defines the quality of each pixel in the phase map to
unwrap the highest quality pixels first and the lowest quality pixels last (quality-
guided phase unwrapping). For this purpose, the methods known as residue-balancing
are proposed, which attempts to prevent error propagation by identifying residues (the
source of noise in the wrapped phase). The residues must be balanced and isolated by
using barriers (branch-cuts), therefore, it aims to produce a path-independent wrapped
phase map. Path-dependency occurs to the existence of residues.

Residue-balancing algorithms search for residues in a wrapped-phase map and
attempt to balance positive and negative residues by placing cut lines between them to
prevent the unwrapping path breaking the mesh created. The residue is identified for
each pixel in the phase map by estimating the wrapped gradients in a 2 x 2 closed
loop, as shown in Figure 2.

Pixel under
test

Figure 2. Identifying residues in a 2 x 2 closed path.

This is carried out using the following equation:

27 27 27 (26)

Where R[] rounds its argument to the nearest integer, Wy, is the wrapped pixel.
The equation 13 can only take three possible results: 0, +1, and -1. A pixel under test
is considered to be a positive residue if the value of r is +1, and it is considered to be a
negative residue if the value is -1. Conversely, the pixel is not a residue if the value of
r is zero. After identifying all residues in the wrapped phase map, these residues have
to be balanced by means of branch cuts. Branch-cuts act as barriers to prevent the
unwrapping path going thorough them. If these branch cuts are avoided during the
unwrapping process, no errors propagate and the unwrapping path is considered to be
path independent. On the other hand, if these branch cuts are penetrated during the
unwrapping, errors propagate throughout the whole phase map, and in this case the
unwrapping path is considered to be path dependent.
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3.2 Global phase unwrapping

In the previous section, it was stated that local phase unwrapping algorithms follow
a certain unwrapping path in order to unwrap the phase. They begin at a grid point
and integrate the wrapped phase differences over that path, which ultimately covers
the entire phase map. Local phase unwrapping algorithms (residue-balancing
algorithms) generate branch cuts and define the unwrapping path around these cuts in
order to minimize error propagation.
In contrast, global phase unwrapping algorithms formulate the phase unwrapping
problem in a generalized minimum-norm sense [6]. Global phase unwrapping
algorithms attempt to find the unwrapped phase by minimizing the global error
function as shown in equation 14

e’ = || solution — problem | P 27)

Global phase unwrapping algorithms seek the unwrapped phase whose local gradients
in the x and y direction match, as closely as possible.

M-2N-1 P M-1N=2

e£=yy Ax¢(i,j)—Ax'//(iaj)| +2 Z

=0 j= i=

N9 )~ A, ) 28)

<.
.

Where A'@(i, j) and A"@(i,j) are unwrapped phase gradients in the x and y
directions respectively, which are given by:

A9, )= @i +1, /)= ¢, ) (29)

N (i, j)= (0. ] + 1) = 940, ) (30)
Aw(i,j) and Aw(i, j) are the wrapped values of the phase gradients in the x
and y directions respectively, and they are given by:

Ay(i, j)= @y (i+1,/) = v, )} D
Ay, j) = oy, j + 1) = (i)} (32)
Finally the wrapping operator is defined by the equation 25.

4 Setup and proposed Methodology

Considering Figure 3, we have a fringe which is projected from the projector, the
fringe reaches the object at point H and will cross the reference plane at the point C.
By observation, the triangles DpHDc and CHF are similar and since:

CD _d,

= 33
T (33)
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Figure 3. Experimental setup. Figure 4. Proposed methodology.

The experimental setup shown in Figure 3 is proposed and during the experiments
the methodology in Figure 3 is applied. The first step is to acquire the image. Due to
the nature of the image, sometimes a filtering to eliminate the noise is necessary, and
a filter is used. Next, the fundamental frequency fo is estimated. Later, the mother is
selected (Morlet or Paul) and applied. The filter at fo is carried out and the Inverse
Wavelet transformation is done. At this stage, the information of the height is phase
wrapped and two phase unwrapping algorithms are proposed: Local and Global
Analysis Algorithm and Graph Cuts Algorithm. The final step is to obtain the object
reconstruction and in some cases to determine the error (in case of virtual created
objects). The experimental setup uses a high-resolution digital CCD camera and a
high resolution digital projector.

The object of interest can be any three-dimensional object and for this work, three
objects are considered, which are shown on figure 5.

It is also important to develop software able to produce several different fringe
patterns. To create several patterns, it is necessary to modify the spatial frequency
(number of fringes per unit area), and resolution (number of levels to create the
sinusoidal pattern) of the fringe pattern. It may also be necessary to include into the
software development a routine capable of performing phase shifting as well as to
include the horizontal or vertical orientation projection of the fringe pattern.
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(a)
Figure 5. Virtual objects used in the test: (a) Hand, (b) Fly, and (c) Airplane.

5 Results

To test the methodology, first an object with Hand shape is used. Then, a sinusoidal
fringe pattern of known spatial frequency is created with 128 fringes and added to the
shape of the created object. The resulting image is shown in Figure 6(c). It is worth
noting the distortions of the fringe pattern due to the object’s shape.

The wrapped phase and its mesh are shown in Figure 6. The reconstructed Hand
using the Morlet Wavelet Transform and applying the Local PU Analysis and the
Global PU Analysis can be seen in Figure 7. Notice that, by applying this method, the
shape of the Hand looks almost equal, but it has an error magnitude of about 3.2 and
2.1% respectively.

(@ ' (b) ©)

Figure 6. Computer created Hand: (a) Object image, (b) Object mesh, and (c)
fringes projected on it.

w\n

Figure 7. Wrapped phase (image and mesh).
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(b)

Figure 8. Reconstructed object using Morlet Wavelet and (a) Local Phase Unwrapping
Algorithm, and (b) Global Phase Unwrapping Algorithm.

The results on Figure 8 show that the whole volume presents an acceptable error
and the shape is well defined. The mother wavelet used was the Morlet but the same
experiment was conducted for the Paul wavelet ant the results are presented on. The
computer simulation allowed us to test and proposed methodology.

To wvalidate the whole methodology, more experiments were conducted
considering the objects observed on Figure 5. Those objects have different shapes
(computer created), where the height is known in every point in the object. Then, the
Morlet and Paul mother Wavelets are considered as well as the two different phase
unwrapping algorithms. As a second experiment, Paul Wavelet is used and height of
the virtual object was compared with each one of the analysis and the results are
presented in figure 9.

(a) (b) (©
Figure 9. Fly object and its reconstruction using Paul Wavelet: (a) Object, (b) Local PU
Algorithm, and (c) Global PU Algorithm.
= s e @
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(@) (b) ‘ (©)
Figure 10. Airplane object and reconstruction using Morlet Wavelet: (a) Object, (b) Local PU
Algorithm, and (c) Global PU Algorithm.

Third experiment was conducted with Morlet Wavelet and the object used was the
airplane, and the respective results of the reconstruction process can be seen in Figure
10. Later, all the experiments are joined and the error magnitude is enclosed on tables



202 J.C. Pedraza-Ortega et al.
1 and 2. The results show that the better performance was obtained by using the
Morlet wavelet together with the Global Phase Unwrapping Algorithm in final step to

do the 3D reconstruction process.

Table 1. Error table using Morlet Wavelet.

Object Local and Global Graph Cuts
Hand 3.26 2.11
Fly 3.47 2.21
Airplane 3.51 2.18

Table 2. Error table using Paul Wavelet.

Object Local and Global Graph Cuts
Hand 437 3.43
Fly 4.65 3.76
Airplane 4.71 3.55

Finally, the performance of the proposed methodology was tested in a real object
(Volleyball) and both Morlet and Paul wavelets were used considering the Global
Phase Unwrapping Algorithm for the phase unwrapping and the results can be
observed in Figure 11.
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(a) (b) ©
Figure 11. Real object and reconstruction: (a) Object, (b) Using Morlet Wavelet, and
(c) Paul Wavelet with Graph Cuts Algorithm.

6 Conclusions and Future Work

In this work, an enhanced Wavelet based Profilometry was presented and tested. Both
Morlet and Paul mother Wavelets were used in conjunction with Local and Global
techniques, as well as Graph Cuts Algorithms in the phase unwrapping process. Three
different objects generated by the computer were utilized (Hand, Fly and Airplane).
The object’s projected fringe pattern has a known spatial frequency. Also, a real
object was chosen and the methodology was carried out with an accurate
reconstruction of the object. Among the proposed wavelets, the one who shows a
better performance was the Morlet wavelet in comparison with Paul wavelet, because
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Morlet was the one that produced a minimal error. As a conclusion, we can say that
the proposed methodology could be used to digitize diverse objects with good results.
As a future work, the software performance can be improved in order to implement it
inside an embedded system.
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