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Received 8 September 2004
Abstract

A new Petri net extension and a novel method describing the structure and behaviour of an intelligent manufacturing system

(IMS), using a VHDL tool, is proposed. The PN extension is defined as Fuzzy Neural Real Time Petri Net (FNRTPN), where the

fuzzy part let the intelligent scheduling of the tasks for the IMS, and the neural part calculates the estimation of the parameters of

the set point for each resource in the system. At last, VHDL is proposed as an Unified Modelling Language (UML) to express the

model of the manufacturing process. The extension and VHDL are used to apply a fuzzy neural control scheme to a FMS.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The design, modelling, simulation, fault analysis and
control of flexible manufacturing systems, have inter-
ested in the last 30 years to academic and industrial
communities. Despite several solutions have been
proposed, the actual requirements of the manufacturing
systems, implying the insertion of intelligence in the
elements and devices included in the process [15]. In that
way, the active interaction of the human with software
and hardware, agility, fault tolerance and the adapt-
ability in general, are decisive characteristics that any
intelligent manufacturing system should satisfy [1].
Therefore, the new methods and tools for design,
simulation and control, must include a unified modelling
language that establish a direct translation between the
parameters of the process and the different strategies of
intelligent control.
e front matter r 2004 Elsevier Ltd. All rights reserved.
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The present work begins with a brief description of
the state of the art for modelling, simulation and control
of FMS, where real-time Petri nets (RTPN) are modified
to introduce a new extension of PN, and strategies for
intelligent control applied in manufacturing systems.
After that, fundamental theorems for the new PN
extension are expressed. Finally, an example of model-
ling, simulation and control of an Intelligent Transpor-
tation, into an IMS, is described. VHDL will be used
for the modelling and control of the IMS, to show
the requirements improvement in an actual manufactur-
ing process.
2. Petri nets definitions

2.1. Real-time PN model

Nowadays, PN have been used as an option for
modelling, simulation, analysis and control for manu-
facturing systems. According to Venkatesh et al. [2],
RTPN not only models the manufacturing process, but
obtains the direct digital control system, described by a
Ladder Logic Diagram (LLD).

www.elsevier.com/locate/rcim
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Fig. 1. Input and output vectors in RTPN extension.
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A RTPN can be obtained by associating timing, and
I/O (input/output) set of information to the untimed
PN, and it can be defined as

RTPN ¼ fP;T ; I ;O;m;D;X ;Y g;

where P ¼ fp1; p2; . . . ; pmg is a finite set of places, T ¼

ft1; t2; . . . ; tng is a finite set of transitions with P [ T ¼ 0
and P \ T ¼ 0; I:P�T N is an input function that
defines the set of directed arcs from P to T where N ¼

f1; 2; . . .g; O:P�T N is an output function that defines
the set of directed arcs from T to P, mi:P N, is a
marking vector whose ith component represents the
number of tokens in the ith place. An initial marking
vector is denoted by m0, D:T R+, is a firing time
function where R+ is the set of non-negative real
numbers, X:P {�,0,1,2,yK} and X ðpiÞaX ðpjÞ; iaj; is
an input signal function, where K is the maximum
number of input signal channels, and ‘‘-’’ is the dummy
attribute indicating no assigned channel to the place
(See Fig. 1.) Y:T L, is an output signal function, and L

is a set of integers.
RTPN properties
1.
 Timing vector ðDÞ is intended to associate time delays
to transitions modelling the activities in the system.
2.
 Input signal vector ðX Þ reads the state of the input
signals from digital input interface. X associates
attributes to every place. X i ¼ X ðpiÞ; where pi

represents the number of channels (bits) of the input
pi: The contents of any X i are either 0 or 1.
3.
Intell
i Ctrl

Y>FUZZY CH.

X>NEURAL CH.

Fig. 2. FNRTPN extension.
Output signal vector ðY Þ is intended to send out-
put signals through digital output interface. Y

associates attribute to every transition. Y i ¼ Y ðtiÞ is
the attribute associated to transition ti which
represents the number that is to be sent to the digital
output interface.

While the program is executed, RTPN writes the
decimal number corresponding to the output channel
to digital output interface when a transition is fired.
Using the X and Y vectors, a new extension, based on

the inclusion of decision strategy by intelligent control,
and the parameter acquisition of the process for the
regulation the best estimation can be obtained by using
a neural network with back propagation training.
In addition, a new variation for hardware description

languages, using direct translation for the control
expressed in a ladder logic diagram, is available. That
new alternative compacts the design and development
for the intelligent control in a programmable device,
which can be applied at the process modelled [3,4].

2.2. The fuzzy neural RTPN model

Several contributions on the application of intelligent
control to solve specific problems can be found in recent
literature. Some propositions, based on intelligent
control strategies, allow the timing, sequencing and
scheduling of tasks, adding adaptability to process
parameter variations, such that velocity, position and
used materials [5,6].
Fuzzy logic, neural networks (NN), genetic algo-

rithms and hybrid systems are actually applied in
intelligent manufacturing system. In fact, fuzzy and
NN are the most common structure used to control the
activities, like robots, conveyor belts and CNC ma-
chines, of specific manufacturing process. Moreover, the
inclusion of fuzzy and NN in PN definition to solve the
short-term control, are included in recent works [16].
The present work describes a neurofuzzy control

scheme, where neural part measures the signal error on
the coupled sensors in each one for the regulation of the
control parameters, and allows evaluating the task
sequencing. Since a fuzzy task scheduler, which
determinates the activation of resources according to
disposability, can be defined, the goal of intelligent
parameter adjusting of each resource of the process,
based on previous fuzzy decisions, improves the adapt-
ability.
3. VHDL and intelligent control scheme

Fig. 2 shows the FNRTPN extension, where the Y

channel add the fuzzy logical decision on the PN firing,
which simulates the decision taken to activate the
resources of the real process. The NN part is applied
to estimate the condition of the resources using a
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Fig. 3. Neural scheme.
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back-propagation scheme. Since the condition of the
whole process is known, the availability of the resources
and the firing decision of the tasks can be controlled.
In order to include the fuzzy and NN schemes to the

original definition of the RTPN, a two-mapping
function must be firstly defined.
If a new firing vector of the PN F is defined, restricted

to the fact that scheduler knows the state of the places in
any time of the evolution of the process. The definition
of F requires a mapping to translate the fuzzy logical
operation values of the scheduler into converted digital
values for the original RTPN. That fuzzy scheme
provides an intelligent firing procedure for one or more
transitions to enable activities (places) of the resources
modelled. In other words, F is indirectly mapped by the
firing vector D to FIRE the change transition of the
RTPN actual states. To evaluate the actual state
activities, the neural part is connected to the X digital
channel, which recognises the values of the sensors
[13,14,17].
NN can be applied to adjust the parameters for a soft

variation in a typical discrete PID control scheme [7].
However, the X channel is used to modify the condition
of the transitions firing (enabling the activities). Since
the output of the final neuron convert the real value of
the sensor connected in the structure, to a fuzzy value
which is evaluated for the scheduler to determine the
actual condition of each recourse.
Consequently, the NN identifies the actual values of

the resources (position, velocity, pressure, etc.) to be
known by the scheduler to decide the next activity.
Therefore, if Z ¼ fz1; z2; . . . ; zmg is the finite set of
neurons connected to each X channel, Z:X P, where the
digital values of the sensors are evaluated by the NN to
refine the decision of the scheduler and the values to
be adjusted in the actuators of each resource, and m is
the number of places, indicating the status of all
the resources. Therefore, the number of sensor must
be connected to verify the actual condition of each
resource.
For the present work, a single-slide back-propagation

NN structure is proposed, because its efficiency in two-
slides scheme [7,12]. The neural scheme is shown in
Fig. 3. That structure will be only used in the auto
tuning strategy for the discrete and analogue actuators
of the resources. The final decision on the parameter
values will depend on the scheduler.
3.1. VHDL description for FNRTPN

VHDL is a suitable tool to describe and model DES
by the structural and behavioural definitions in the
entity and architecture schemes [9]. Several authors
propose VHDL to model structures of intelligent
control, incorporating fuzzy, NN, or other kind of
schemes applied in FMS for sequencing, scheduling and
control.
Using typical command description for discrete

systems, a good level definition can be obtained to
describe the structure and behaviour of the FNRTPN
model.

3.2. Fuzzy neural control scheme

The use of a hardware description language is
proposed as a tool of simulation and analysis for the
FNRTPN model to develop a neurofuzzy control
scheme to be applied in the real process. VHDL allows
a concurrent design, which uses a unified modelling
language with a unique database, generated and
addressed at any step of the method [10].
Despite VHDL is mainly used in the design of

complex digital circuits, it can be used in FNRTPN to
describe processes like DES. At last, the simulation,
analysis and design of the control can be evaluated using
a typical discrete event evolution diagram, where
transition signals express the discrete behaviour of the
process in terms of the scheduling, timing and sequen-
cing of task.
If the simulation and analysis have been exhaustively

realised without find problems in feasibility, the next
step for the synthesis of the intelligent control can be
made.
Using the report generated for VHDL tool, an Inverse

Logistic Algorithm (ILA) can be proposed to obtain the
structure of the control scheduler. Therefore, the fuzzy
vector F, and the neural set NN allows the interconnec-
tion between the real process and the intelligent control
scheme (see Fig. 2).
The structure and design for the scheduler was

proposed by Salapura [8], where the fuzzifier, the
defuzzifier, the set of rules and the inference machine
are coded in VHDL. Moreover, the behavioural
information is obtained by the ILA algorithm applied
to the FNRTPN model of the process.
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Fig. 5. Signals for the system.
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The ILA procedure is as follows:

Each ti (process) is marked as pj (FNCS).
Each pi (process) is marked as tj (FNCS).
I O for each state in the structure of the FNRTPN.
A(FNCS)=A�1 (process).
Evolutionary method (Dadone).
ASM description for the structure and behavioural
obtained.
Coupling step between the CORE defined for typical
resources restricted for CADYC method proposed and
the ASM description.
Definition in VHDL.
Testing until complete satisfaction.

That algorithm is based on the scheme suggested by
Dadone in 1997 [16], where an evolutionary program-
ming method is presented. The method offers improve-
ments in the use of VHDL, as a unified modelling
language, for all the steps required in control schemes if
the process is always described like a DES, and the
control strategy is implemented in a programmable
device.
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4. An example—intelligent transport

Fig. 4 shows the layout of the Transport system,
which is a part of a FMS analysed in Instituto
Tecnológico of Puebla. That system is used for
distribution and inspection of the parts manufactured
in the FMS. The neurofuzzy control scheme, allows an
intelligent adjust for the process. Two MitsubishiTM 5
degrees of freedom robots are included as resources of
manipulation of the pieces. The first robot includes a
camera vision for the detection of the pieces and the
piece can be taken. Two conveyor belts (cv), driven by,
servo motors are used for transportation. Additional
sensors and actuators are included, as shown in Fig. 5.
Fig. 5 is an extended layout of the system to be

modelled and controlled, where the X and Y parameters
Fig. 4. System to be modelled.

Fig. 6. TAD description.
for the FNRTPN are obtained. By using that informa-
tion, the structure for the FNRTPN can be created.
Fig. 6 shows the TAD of the transport system. The

description is obtained by the application of Woi and
Bundell method proposed in [5], and the tool developed
in [11]. The ASM description and the FNRTPN model
are obtained, and results are shown in Figs. 7 and 8.
The obtained ASM description describes the process

task sequence and their conditional decisions, where
intelligent control can be applied. Fig. 8 shows the final
FNRTPN model, where the specific tasks of the process
are defined and the transitions are finite. Each transition
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receives a fuzzy channel fi for the scheduler, in order
to choose the evolution and adequate sequencing,
according to the estimated values of the system by the
neural part.
Similar transportation tasks for each type of piece can

be noticed because they have been defined a priori in a
VHDL CORE. The discrete model for the servomotors,
cv’s and robot dynamics, were modelled using linear
discrete state variable equations. The student version
BASELINE 10.7 of ALTERATM was used, and the
programming scheme was developed in C language for
MS-DOSTM, using a NETLIST definition. Fig. 9 shows
the synthetic structural and behavioural description for
the FNRTPN model.
The directive entity is used to define the input signals

(fuzzy,) and output signals (neural), which are expressed
in the PORT command, where all the resources allowed
states, and fixed times assigned to specific tasks are
given.
Fig. 10 shows the neurofuzzy control description

obtained using the proposed method of ILA applied at
the FNRTPN model, where the X and Y transposition
can be observed and the D’s state are determined.
Despite the direct neural control is defined a priori by
the CORE, the final decision to change the PID
parameters of the actuators resides on the scheduler.
Similar values for the Neural PID were pre programmed
and obtained as in [12] for the servo motors and the
robots. To evaluate the performance of the FNRTPN
and the real evolution of the system, a discrete
simulation is showed in Fig. 11.
The adequate evolution between the real performance

of the FMS and the control decisions of the scheme
obtained by our method can be noticed. The evolution
of the real system was evaluated in other environments
like ARENATM, OOPN tools, but the observance of the
model and the control in the same platform, was hard to
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Fig. 9. VHDL description of the FNRTPN model.
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realize. Obtained improvements allow the analysis of the
discrete dynamics of the process model, and the control
decisions can be evaluated. However, some problems
related to the resources discrete models were found.
Fig. 10. Partial VHDL description of the neurofuzzy control

scheme (a). Partial VHDL description of the neurofuzzy control

scheme (b).
5. Conclusions and future work

The results of the application of the proposed method
show improvements in control simplicity, and a better
performance when a FMS is modelled, simulated and
designed in its control strategy. The intelligent control
applied allows to the system self deterministic beha-
viour, increasing its adjusting and fault tolerance.
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Fig. 11. Simulation.
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Therefore, the method proposed a new extension of
PN, with a better link between the real FMS and the
intelligent control scheme. The project goals have been
fulfilled, and the complete environment is working in the
CIM-2000 of the Instituto Tecnológico de Puebla, where
the intelligent control system applied shows an im-
proved performance for the programmed activities.
The proposed method demonstrates the feasibility of

the application of novel control strategies, which can be
restricted by the use of discrete event models of process
using discrete state variables for the elements and
devices. The robustness and stability of the intelligent
control generated must be analysed in future projects.
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[12] Gracios C, Muñoz G, Estévez J, Torres S. Neuro-PID control

system with gravity compensation. Proceedings of the third IEEE

international symposium on robotics and automation, Toluca,

Edo. Mexico, 2002.

[13] Jiang Ch, Zheng Y. Fuzzy reasoning based on Petri nets. New

York: IEEE Press.

[14] Ojala T. Neuro–Fuzzy systems for control. MSc thesis. Tampere

Technical University, Finland, 1995.

[15] Myong-Gyun R, Sang-Eun H. Control and monitoring of factory

automation system using Fuzzy Petri nets. IEEE, International

symposium on industrial electronics, Pusan, Korea, 2001.

[16] Dadone P. Fuzzy control of flexible manufacturing systems. MSc

thesis. Blacksburg, VA, 1997.

[17] Chen P, Forward K. Fuzzy Petri nets. First international

conference on knowledge-based intelligent electronic systems,

Adelaide, Australia, 1997.


	Describing an IMS by a FNRTPN definition: a VHDL approach
	Introduction
	Petri nets definitions
	Real-time PN model

	RTPN properties
	The fuzzy neural RTPN model

	VHDL and intelligent control scheme
	VHDL description for FNRTPN
	Fuzzy neural control scheme

	An examplemdashintelligent transport
	Conclusions and future work
	Acknowledgements
	References


