
 

  
Abstract— Monitoring, modeling and forecasting of air quality 

parameters are important topics in environmental and health 
research due to their impact caused by exposing to air pollutants 
in urban environments. The aim of this article is to show that 
forecast of daily airborne pollution using support vector 
machines (SVM) is feasible in regression mode. Results are 
presented using data measurements of Particulate Matter of 
aerodynamical size on the order of 10 and 2.5 micrograms (PMx) 
in London-Bloomsbury at south England. 
 

Index Terms— Particulate matter, Support Vector Machines, 
PMx, airborne pollution, forecast. 

I. INTRODUCTION 
N recent times, urban air pollution has been a growing 
problem especially for urban communities. Size, shape and 

chemical properties govern the lifetime of particles in the 
atmosphere and the site of deposition within the respiratory 
tract. Health effects differ upon the size of airborne 
particulates. In this contribution, PM10 (particles less or equal 
than 10 micrometers) and PM2.5 (particles less or equal than 
2.5 micrometers) are considered due to its effect on human 
health, according to several authors [1-6] This is the primary 
reason this research has been done; to monitor, and model the 
levels and spread of PMx in urban environments. In previous 
contributions, it has been shown that forecast of concentration 
levels of PM10 may be possible by using other techniques 
such as neural networks and various fuzzy clustering 
algorithms [7-8]. However, even though these works have 
shown that is feasible to robust model the non-linear behavior 
of the system, a more robust model is needed with an 
enhanced method to reduce the error between the raw data and 
the model. For this reason, support vector machines (SVM) 
are chosen for this work. In this appraisal, the modeling will 
be carried out using support vector machines working in 
regression mode. Support vector machines are a recent 
statistical learning technique, based on machine learning and 
generalization theories, it implies an idea and could be 
considered as a method to minimize the risk [9]. Also, a 
generalization capability makes possible their application to 
modeling dynamical and non-linear data sets. 

 
 

II. SUPPORT VECTOR MACHINES 

A. Theory of support Vector machines for regression 
The support vector machines (SVM) theory, was developed 

by Vapnik in 1995, and is applied in many machine-learning 
applications such as object classification, time series 
prediction, regression analysis and pattern recognition. 
Support vector machines (SVM) are based on the principle of 
structured risk minimization (SRM) [9-10].  
In the analysis using SVM, the main idea is to map the 
original data x into a feature space F with higher 
dimensionality via non-linear mapping function φ , which is 
generally unknown, and then carry on linear regression in the 
feature space [8]. Thus, the regression approximation 
addresses a problem of estimating function based on a given 
data set   (where xi represent the input vectors, di are the 
desired values), which is produced from the φ function. SVM 
method approximates the function by: 

y = wi!i (x) + b
i=1

m
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where w = [w1,…,wm] represent the weights vector, b are the 
bias coefficients and φ(x)=[φ1(x),…, φm(x)] the basis function 
vector. 
 The learning task is transformed to the weights of the 
network at minimum. The error function is defined through 
the ε-insensitive loss function, Lε(d,y(x)) and is given by: 
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 The solution of the so defined optimization problem is 
solved by the introduction of the Lagrange multipliers αi, ! i

*  
(where i=1,2,…,k) responsible for the functional constraints 
defined in Eq. 2. The minimization of the Lagrange function 
has been changed to the dual problem [9]: 
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With the constraints 

(! i ,! i
* ) = 0,
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(4) 

Where C is a regularized constant that determines the trade-
off between the training risk and the model uniformity. 
According to the nature of quadratic programming, only those 
data corresponding to non-zero (! i "! i

* ) pairs can be referred 
to support vectors (Nsv). In Eq. 3 K(xi , xj)=φ(xi)* φ(xj) is the 
inner product kernel which satisfy Mercer’s condition [11] 
that is required for the generation of kernel functions given by: 

K(xi , x j ) = !(xi ),!(x j )  (5) 
Thus the support vectors associates with the desired outputs 
y(x) and with the input training data x can be defined by: 

y(x) = (! i ,! i
* )K(x, xi )

i=1

Nsv

" + b  (6) 

 Where xi are learning vectors.  Leading us to a SVM 
architecture and are also founded in [7][8][12]. 
 

 
 

Fig. 1.  Support Vector Machine Architecture. 
 

B. Kernel function 
The use of an appropriate kernel is the key feature in support 

vector applications, since it provide the capability of mapping 
non-linear data into “feature” spaces that in essence are linear, 
then an optimization process can be applied as in the linear 
case. This provides a way the course of dimensionality, but 
still the results depend of the good selection of a set of training 
datasets. 
 
1) The Gaussian Kernel function 
The Gaussian kernel function is defined in [9-11] Eq. 7.  

K(xi , x j ) = exp
! xi ! x j
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The Gaussian kernel process delivers an estimate for the 
reliability of the prediction in the form of the variance of the 
predictive distribution and the analysis can be used to estimate 
the evidence in favor of a particular choice of covariance 

function. The covariance or kernel function can be seen as a 
model of the data, thus providing a principled method for 
model selection [12-13]. 
 
2) The Polynomial Kernel function. 

A polynomial mapping is a widely used method for non-
linear modeling [11][13], defined by: 

K(xi, x j ) = xi, x j
d

 (8) 

Unless the used of equitation 8 implies an inherit problem, 
some Support Vector Machines become zeros then is 
preferable to rewrite the expression as: 

K(xi, x j ) = xi, x j +1( )d  (9) 

C. Bias Analysis 
The inclusion of a bias within the kernel function generally 
leads to a more efficient implementation and a slightly better 
accuracy model. Conversely the solution achieved with an 
implicit or explicit bias are not the same. This dichotomy 
emphasizes the difficulties whit the interpretation of 
generalization in high dimensional feature spaces. In this work 
the explicit bias approach is used. 

D. The free parameters 
Other important issues in support vector applications are the 

selection of free parameters such as the coefficient of C, the 
value of error ε it determine the margin within which error is 
neglected and in the Gaussian kernel function the value of 
variances σ[13-15]. 

E. The quadratic programming problem 
The SVM training works flawlessly for not too large data 

sets. However, when the number of data points is large, over 
2,000, the Quadratic Programming (QP), problem becomes 
extremely difficult to solve with standard QP solvers and 
methods [11-16]. In the study case of this survey, the number 
of data points is 365, where each data point represents the 
daily average of PMx concentration. Therefore the analysis 
and solving of the QP problem is not considered in the scope 
of this survey.  

According to [9-11], the insensitive loss function is equal to 
these slack variables, where the ε-insensitive loss function is 
defined in equation 2, similarly the quadratic ε-insensitive loss 
function is defined by 

L! (d, y(x)) = d ! y(x) !
2  (10) 

 
Figures 2a y 2b, show the form of the linear and quadratic ε-
insensitive loss functions. The ε-insensitive loss function is 
attractive because unlike the quadratic cost function, where all 
data points will be support vectors, then the solution can be 
sparse. The quadratic loss function produces a solution which 
is equivalent to ridge regression. 
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Fig 2a. The linear ε-insensitive loss for zero and non-zero ε 

 
Fig 2b. The quadratic ε-insensitive loss for zero and non-zero ε 
Fig 2. The ε-insensitive loss functions for zero and non-zero ε 

 

III. METHODOLOGY 
The proposed Methodology have been taken from [3-4], 

such this works provides the general steps to make pollutants 
modeling and predictions by using SVM working in 
regression mode. In this survey only a Gaussian kernel 
functions is used and implemented the main reasons to choose 
a Gaussian kernel functions are, it has been widely used in the 
literature [3][4][13][14][15], a Gaussian distribution provides 
a natural representation of the system behavior [13][15].  The 
aim of this survey is to show the relations between kernel 
Gaussian parameters and the obtained SVM models. 

In order to perform an appropriate design, train, and testing 
of SVM this article describes a generic methodology based in 
a review of [3-4]. See Fig 3. 
 

(a) Preprocessing of the input data by selecting the 
most relevant features, scaling the data in the range 
[−1, 1], and checking for possible outliers. 
(b) Selecting an appropriate kernel function that 
determines the hypothesis space of the decision and 
regression function. 
(c) Selecting the parameters of the kernel function, in 
polynomial kernels the degree for polynomials and 
the variances of the Gaussian kernels respectively. 
(d) Choosing the penalty factor C and the desired 
accuracy by defining the ε-insensitive loss function.  
(e) If required, solving the QP problem in l for 
classification problem and 2l variables in the case of 
regression problems. 
(f) Validate the model obtained on some previously, 
during the training, unseen test data, and if not 
pleased iterate between steps (c) (or, eventually b) 
and (e). 

 

 
Fig 3. Diagram of the proposed Model Solution 

 

IV. DISCUSSION 
The fundamental reason for considering SVM working in 

regression mode as an approach for PMx modeling is the non-
linear aspect of the application. 
 There is no predetermined heuristic for the choice of free 
parameters and design for the SVM, many applications appear 
to be specific, in order to improve the SVM performance 
trough the automatic adjustment of free parameters. 
 Using SVM on real time applications appear to be rather 
complex since of the computational demands of the deriving 
results.  

V. EXPERIMENTAL RESULTS 
The Support Vector method can be applied to the case of 

regression, maintaining all the main features that characterize 
the system behavior. An SVM in a kernel-induced feature 
space learns a non-linear function while the capability of the 
system is controlled by a set of parameters that does not 
depend on the dimensionality of the space. In this section 
presents a set of results and simulations by using the proposed 
regression SVM model approach with Gaussian kernel 
functions and standard nonlinear data sets of PMx. During 
2009, simulations were carried out using the proposed SVM 
model. The σ values were modified to 1 and 2. Likewise, the ε 
values were modified to 7,11 and 13. For every case study, the 
normalized value C remained content to a value of 100. Also 
is observed that the error rate of standard SVM varies wildly 
depending on different values of SVM free-parameters and 
kernel parameters.  
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Figure 4 shows a summary of the results with the Support 
vector machine (in red circles), the raw data (black cross) and 
the behavior of the data (solid black line). These results show 
that the best results are obtained with σ of 2 and an ε of 13 
(figure 4a y 4b) due to the small number of SVMs and small 
error rate, whilst the worst-case scenario is obtained with a σ 
of 1 and an ε of 13 (figure 4d), since a large number of 28 
SVMs is obtained.  
 
 

 
Figure 4a: Prediction of PMx concentration in January using a Polynomial 

kernel. 

 
Figure 4b: Prediction of PMx concentration in January using a Gaussian 

kernel. 
 

 
Figure 4c: Prediction of PMx concentration in October using Polynomial 

kernel. 

 
Figure 4d: Prediction of PMx concentration in October using Gaussian 

kernel. 
Figure 4: Prediction of PMx concentration  

 
 

Samples 
2007. 

 

Polynomial kernel Gaussian kernel 

No 
SVM 

Incorrect 
Forecasting 

No 
SVM 

Incorrect 
Forecasting 

January 17 3 26 1 
February 6 5 18 3 
March 12 4 28 1 
April 12 4 25 0 
May 8 3 23 2 
June 13 1 20 1 
July 18 1 26 1 
August 11 2 24 1 
September 16 1 25 2 
October 18 0 28 1 
November 17 1 24 2 
December 15 3 26 2 

 
From these results, it can be concluded that for this case study 
a σ of 1 gives a similar number of SVMs with respects to the 
number of data points. This exponentially increases the 
computational cost, making it unfeasible to calculate it.  

VI. CONCLUSION 
This survey has presented a modeling method of the daily 
atmospheric pollution by applying the support vector machine 
with Gaussian and Polynomial kernel functions working in 
regression mode. The application of SVM has enabled to 
obtain a good accuracy in modeling pollutant concentration of 
both PM10 and PM2.5.  
The methods, techniques and alternatives offered in the SVM 
field provides a flexible and scalable tool for implementing 
sophisticated solutions with implied dynamical and non-linear 
data. It is noteworthy to point that the SVM guarantees this 
global minimum solution and a good feature of generalization. 
Furthermore, implementing other kernel functions like 
polynomial, wavelet and hybrid functions may be 
implemented for future contributions.  
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