
A New Trajectory Generation Method Using
Vision for a Robot Manipulator

1 J.A. Soto, 2 J. E. Vargas y 1 J.C. Pedraza

1Centro de Ingeniería y Desarrollo Industrial, Unidad de Investigación y Postgrado

2 Universidad Anáhuac – México Sur, Facultad de Ingeniería

Abstract

In this work a new proposal method is presented
to generate close paths for a robot manipulator.
Through a specific image, which contains an object,
an image processing is applied to obtain the
boundaries of the image, with this boundary and
applying the inverse kinematics the path that the
robot should follow, is created, so that finally the
path can be simulated and created in a five degrees
of freedom manipulator.

1. Introduction

The robotics, artificial vision and their
applications are some of the greatest fields for
research. Investigations on this fields promise
advanced developments and novelties in many
aspects. Applications of projects which combine
robotics with artificial vision are more easily found
nowadays, they are also more interesting and
complex.

The main idea of this job is to generate a practical
application, using a five degrees of freedom robot
manipulator and a digital camera. Within the
possible applications there are for example: cutting,
brazing and drawing. The generation of the path
could be extrapolated to any other kind of robot or
machine that can follow the path. The steps to
follow during the development of this job are the
next ones:

- Obtain an image and realize the preprocessing.
- Generate the path of the object over parametric

curves using cubic schemers (splines) to soften
the boundary.

- With the inverse kinematics and the parametric
curves, generate the path for the manipulator
robot.

- Realize the simulation of the path tracking,
using OpenGL libraries.

2. Path Generation

There are two basic ways for programming the
path in a manipulator robot, the explicit
programming and the implicit programming.

The explicit Programming divides itself in gestual
programming and textual programming. In the
gestual programming the robot is taught by taking it
to the interest position, keeping it and defining speed
and acceleration, this type of programming is also
called on-line programming, many times is
necessary to stop the process in wich the
manipulator will act to be able to program it. In
textual programming tha calculus for the inverse
kinematics are made carefully, to generate the path,
considering position, speed, acceleration and
workspace, this kind of programming is also known
as out-line programming and it is not necessary to
stop the process in which the manipulator will act.

The implicit programming is when the robot has
pre-defined tasks and with the help of a sensors
system and the correct programming, it makes the
robot to seem intelligent. This programming falls
into artificial intelligence and is the most advanced
in what manipulators programming refers to.

2.1 Obtaining the image and preprocessing

The image processing is basic but not less
important in this work. The process of capture of
image and its processing have a great number of
methodologies and algorithms hardly studied. The
knowledge of the application and how to use these
tools are the key to have a successful and functional
result.

First the image is obtained with any camera, if
possible, having a good lighting and a good contrast
between the background and the desired object
(figure 1, real image). The image is transformed into
a gray scale, if it is necessary. After this, it is
binarized and finally the boundary is generated,
storing the data in two vectors(x,y), which represent
the real path of the image. In figure 1 the results of
this process are showed.

The algorithm to follow the boundary, is an own

contribution, it consists en assigning a searching
address (clockwise), search for a start point, follow
each one of the boundary points and store them in a
pair of vectors (x,y), which represent us the location
on the plane and are necessary to obtain the splines.

Figure 1. Processing Results

2.2 Boundary Softening with Splines

Once the boundary of the images is obtained in
vectors (x, y), the boundary may have non-desired
irregularities, because of the defects in the image
obtaining or during the preprocessing, which may
have some noise, that is why sometimes is necessary
to soften the boundary of the image.

An option to soften the image is using cubic
schemers, which represent the path. The process to
soften the path includes knowing the complexity of
the same, selecting the points which best represent
the desired boundary and applying the cubic
schemers.

In figure 2, the selected points to soften the
boundary are represented. For this example the
initial length of the vector is 1339 points, 35 points
are selected and it is how the points can be observed
in the same figure 2, the results are interesting.

Figure 2. Results after softening

The splines not only help us softening the
boundary, but also, it reduces the memory size used
and the most interesting, because there are cubic
polynomials, the first and second derivative for each
one of the points can be obtained, this makes easier
the job to obtain the inverse kinematics for the robot.

2.3 Position in the workspace

After the obtaining the path from the image, the
next step is locate it in the workspace of the robot,
for this case the path is 2D, that is why it is located
in the xy plane at a constant altitude z=300 mm,
(scaling the PIXELES of the image in millimeters).
In figure 3 the path located in the workspace of the
manipulator is showed.

Figure 3. Path in the workspace.

2.4 Kinematics of the Manipulator

To develop the kinematics of the manipulator
there are used homogeneous transformed matrixes,
figure 4 shows an image of the robot. The robot is
drawn on OpenGL and the manipulator Mitsubishi
Melfa RV-2AJ was taken as a base form. The robot
counts with 5 degrees of freedom, the five degrees
are rotational and each one has their rotation
restrictions, these restrictions and the speeds are
showed in figure 5.

Figure 4. Robot Configuration

Table 1. Restrictions for the Manipulator

The inverse kinematics, for this example,
simplifies because the tool direction on the plane is
constant on the negative z axis direction, therefore
the direction of the 4th link will be always
orthogonal to the z axis, simplifying the kinematics
considerably. But it is not always like that, that is
why it is necessary to consider all the transformation
matrixes. Continuously the transformation matrixes
are showed for the direct kinematics, represented by
A, with a sub index that represents the axis for initial
coordinates and a super index that represents the
axis for final coordinates.

 (1)

(2)

(3)

 (4)

 (5)

 (6)

The direct kinematics is obtained by multiplying

each one of the transformation matrix, to obtain a
matrix which goes from the coordinates 0 axis to the
coordinates 6 axis, presented as A06, as the formula
number 7 shows. The direct kinematics is necessary
to proof the calculus of the inverse kinematics.

 (7)

For the calculus of the inverse kinematics, first the
path that the robot is going to follow needs to be
known, which we know. In function of the path the
orientation of the coordinates 6 axis (or the tool)
relatively with the coordinates 0 (the base), is
oriented together with each point of the path position
(px, py, pz), witch form the matrix of the desired
transform Td which is showed in formula number 8.

 (8)

Where the vectors n, o and a represent the
orientation of the coordinates 6 axis relatively to
axis 0 and the vector p the position in the space
equally referenced to the 0 axis. To solve the inverse
kinematics it is just enough to equate the desired
transformation matrix with the original matrix,
Td=T, and solve for the angles q1, q2, q3, q4 and q5.
As it has been mentioned, this simplifies, because
the tracking of that path, the orientation of the tool
remains the same.

Once we know the angles, the maximum speeds
need to be considered for each articulation and, in
function of this speeds, take the robot from its
position start point to the path start point, taking care
of collisions. In the same form the maximum speed
of path tracking is in function of the articulations
speeds.

Figure 5 shows the table of maximum speeds for
the robot for each articulation and figure 6 shows a
block diagram, where the steps to achieve the
simulation are showed.

Figure 6. Block Diagram of the system

3 Analysis of the results

For some engineering designs and normal calculus
is necessary to manage matrixes. In this proposal we
manage matrixes for the image processing and for
the manipulator kinematics. Matlab has a great
number of functions for matrixes operations;
besides, there are many different ways to realize
interfaces between Matlab and different languages,
such as C++.

Using these tools the simulation over C++ was
developed. First all the calculus necessary for the
Matlab are done, to finally simulate with the
OpenGL libraries.

The results, after running the simulation are very
interesting. Figure 6 shows an instant in which the
robot is tracking this path, the simulation was done
over C++ with OpenGL libraries.

In figure 7, the same analysis is done for a
different figure, a bit more complex and just as the
previous one, there was no problem to track the
path.

Figure 7. Path tracking

In this form almost all kinds of path in 2D can be

tracked, as long as it is inside the workspace of the
manipulator

Figure 8. Path tracking

4 Conclusions

The advances of this work, until the day the article
was written, are promising and it is expected that
into the practice, with the real robot, these results are
checked.

As long as the article was written, it could be
observed that with a simple image processing along
with a mathematical tool, such as the splines, was a
powerful result for soft path generation for a
manipulator robot.

Since the kinematics of the manipulator is in
function of the splines obtained from the processing,
and since the splines are cubic polynomials they can
be treated without big problems, the next point that
this work is pretending to develop, is the tracking of
the same paths, but this time facing the tool to the
normal direction to the tangent of each point of the
path, which modifies and makes the manipulators
kinematics more complex.

Finally it is desired to work in the intersection,
capture and manipulation of motion objects, initially
over a transporting band (at an unchanging height)
and after that scaling it to any point in the
manipulator’s workspace.

References

[1] Myler H, Weeks A, “Computer Imaging Recipes

in C”, Prentice-Hall, USA, 1993.
[2] Barrientos A, Balaguer C, “Fundamentos

deRobótica”, Mc Graw Hill, 1st Edition,
España, 1997.

[3] Neider J, Davis T, “ReedBook”, Addison
Wesley, 2nd Edition, USA, 1997.

[4] Wright R, Sweet M, “OpenGL Super Bible”,
Waite Group Press, 2nd Edition, USA, 1999.

[5] Bay Y, “Applications Interface Programming
Using Multiple Languages”, Prentice Hall, USA,
2003.

