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Modelling of a Single Degree of Freedom Flexible
Arm Pneumatically Operated

Fernando F. Kiyama and Emilio Vargas

Abstract— This paper is about the modelling of one of the de-
grees of freedom of an industrial flexible manipulator, pneumati-
cally operated by means of a cushion type air cylinder. Pneumatic
modelling is made upon the thermodynamic principles of mass
and energy conservation, the flexible arm model is made using
constrained generalized coordinates, and the assumed modes
method. A manipulator prototype was built and instrumented, its
experimental data is presented for model verification purposes.
The flexible arm simulated vibration is compared both, with the
results obtained upon the identification of the arm generalized
coordinates and direct vibration measurements.

Index Terms— pneumatic cylinder, flexible manipulator, mod-
elling, robotics, assumed modes.

I. I NTRODUCTION

T RADITIONALLY the structural rigidity of robots has
been a fundamental characteristic to achieve speed

and accuracy. This rigidity means more weight and inertia,
requiring an increase in the size of the actuators and more
power to operate at the same speed. With the development of
robots with high speed, high precision and heavy load, the
effect of elastic deformation must be taken into consideration.

Some particular systems, such as light industrial
manipulators and the large space structures require lightweight
elements. Weight reduction however, results in lack of sensing,
vibration, and incapability of precise positioning because of
the flexibility of the system, and difficulty to obtain accurate
model.

Flexible manipulator modelling, has been done for many
years to describe its dynamic behavior and improving
it. Several methods have been proposed to consider the
effect of elasticity. One is the assumed modes method,
which presupposes the displacement function to establish
the movement equation [1], [2], [3]. Another is the finite
element method, which divides the link into discrete elements
to derive the system equations [4], [5]. A third method
commonly adopted by many researchers, is the lumped
parameter method, similar to the finite element method but
reducing the amount of calculation [6], [7].

Since modelling of flexible manipulators is very complex,
many researches consider as a first step only one link as
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Fig. 1. Arm deformation about inertial coordinates

flexible [7], [5]. Nevertheless powerful computers have
enabled to consider several links to be flexible [1], [2], [3],
[4], [6].

This paper presents the modelling of one degree of
freedom, for an industrial type flexible manipulator, operated
by a pneumatic cylinder equipped with break cushions. The
elasticity of the arm is modelled using constrained generalized
coordinates and the assumed modes method. The description
of the dynamics of the control valve and the linear actuator is
presented, and the considerations to model the system friction
force effects are proposed, as a variation of the Van de Vrande
smooth function [15]. Simulation results are presented and
compared with experimental data for validation purposes.

This work is part of the development on an industrial
dielectric manipulator, designed for the cleaning maintenance
of insulators in electric power lines, [8].

II. DYNAMIC MODEL OF THEMANIPULATOR

The arm structure consists of a rigid base and a flexible
bar, which actually is a two link chain as shown in Figure 1,
operating in the vertical plane. The rigid base is pivoted in the
origin of the inertial frameXY , the flexible bar is fixed to the
rigid base, and attached to a moving reference framexy.

II-A. Kinematics and Dynamics of the Mechanism

The kinematics of the flexible arm is defined as shown in
Figure 1 by the parametric representation of the beam shape,
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namely the vectorial functionrp considered for a pointp upon
the transversal section of the arm:

rp(x, t) = r0(t) + (x + u(x, t)) i + v(x, t)j (1)

The elastic displacement profile is described by a finite sum
of assumed modes:

v =
n∑

r=1

ψr(x)qr(t) (2)

ψr(x) are spatially-dependent assumed modes,qr(t) are
time-dependent generalized coordinates andn is the number
of modes.

From 1 the kinetic energy can be written as:

T =
1
2
I6θ̇6

2
+

1
2

∫ L

0

µrp(x, t) · rp(x, t)dx (3)

whereI6 is the mass inertial moment of the rigid base about
the inertial frame,µ is the mass of the arm per unit length
and L is the length of the arm. The first term in 3, gives
the kinetic energy of the rigid base, and the second term
considers only the translational kinetic energy of the arm,
because the rotational energy is very small.

Considering that the arm deforms in theXY plane only,
the potential energy will be given by:

V =
1
2

∫ L

0

EI (v”(x, t))2 dx (4)

where EI is the bending stiffness of the arm. The model
is simplified by ignoring the axial deformation for being small.

The effect of gravity and of applied forces can be considered
from virtual work:

δW = F56 · δr15 −m6g0 · δr6G −
∫ L

0

µg0 · δrp dx (5)

whereF56 is the driving force,δr15 is the virtual displacement
of the point of application of the driving force,m6 is the mass
of the rigid base,g0 is the gravitational acceleration andδr6G

is the virtual displacement of the mass center of the rigid base.

By substituting equations 1, 2, 3, 4 and 5 into Lagrange’s
equations, the equations of motion are obtained. They are
given by the following:

(µLr2
0 + I6)θ̈6 +

1
2

(
µL2r0 − {q}T [J ]{q}) θ̈cos(θ − θ6)

−{b}T {q}θ̈sin(θ − θ6) + {b}T {q̈}cos(θ − θ6)
−2{b}T {q̇}θ̇sin(θ − θ6)

−({b}T {q}θ̇ + {q}T [J ]{q̇})θ̇cos(θ − θ6)

−1
2
(µL2r0− {q}T [J ]{q})θ̇2sin(θ − θ6)

= (µLr0 + m6r6G)g0sinθ6

+r15(F56ycosθ6 − F56xsinθ6) (6)
1
2
(µL2r0 − {q}T [J ]q)θ̈6cos(θ − θ6)

−{b}T {q}θ̈6sin(θ − θ6) + {q}T ([M ]− [H]){q}θ̈

+I0θ̈ + {a}T {q̈}+ 2{q}T ([M ]− [H]){q̇}θ̇
+({b}T {q}θ̇6 − {q}T [J ]{q̇})θ̇6cos(θ − θ6)

+
1
2
(µL2r0 − {q}T [J ]{q})θ̇6

2
sin(θ − θ6)

=
1
2
(µg0L

2 − {q}T [G]{q})sinθ + {q}T {g}cosθ (7)

{b}θ̈6cos(θ − θ6) + {a}θ̈ + [M ]{q̈}+ {b}θ̇6
2
sin(θ − θ6)

−([M ]− [H]){q}θ̇2 + [J ]{q}θ̇6θ̇cos(θ − θ6) + [K]{q}
= [G]{q}cosθ + {g}sinθ (8)

whereI0 is the “rigid” mass moment of inertia of the flexible
arm about the origin of the moving frame. The matrix coeffi-
cients in 6, 7 and 8 are defined in terms of the assumed modes
as shown below:

Jr,s=
∫ L

0

µr0

∫ x

0

ψ′r(σ)ψ′s(σ)dσdx (9)

br=
∫ L

0

µr0ψr(x)dx (10)

Mr,s=
∫ L

0

µψr(x)ψs(x)dx (11)

Hr,s=
∫ L

0

µx

∫ x

0

ψ′r(σ)ψ′s(σ)dσdx (12)

ar=
∫ L

0

xµψr(x)dx (13)

Gr,s=
∫ L

0

µg0

∫ x

0

ψ′r(σ)ψ′s(σ)dσdx (14)

gr=
∫ L

0

µg0ψr(x)dx (15)

Kr,s=
∫ L

0

EIzψr”(x)ψs”(x)dx (16)

equations 6 and 7 describe the movements of the rigid base
and the moving frame respectively, whereas 8 is a set ofn
equations describing the elastic movement of the arm.

II-B. The Assumed Modes

The use of the moving frame to describe the motion of
the manipulator, introduces the additional variableθ (see
Figure 1), which requires an additional constraint equation to
deal with. The constraint determines the boundary conditions
associated with the elastic movement. The adequate selection
of assumed modes guarantees the constraint to be satisfied,
being equal to choose a set of independent generalized
coordinates.

Considering that the rigid base and the flexible arm form
an unarticulated unit, it would be natural to consider the zero
slope constraint, therefore selecting assumed modes such that
the elastic movement has zero slope in the arm’s attachment
to the base, this allows to express the angular positionθ of the
moving frame in terms of the angular positionθ6 of the rigid
base, rendering simpler equations of motion, unfortunately in
this work it was found in practice as [9] indicates, that this
constraint leads to an inaccurate model. The inaccuracy is
related with the([M ]− [H]) term in the equations of motion
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as explained in [10].

In the model proposed the rigid body constraint is used,
which forces the secondary motion to have no rigid body
components. The constraint has the form:

1√
I0

∫ L

0

µxv(x, t)dx = 0 (17)

II-C. Differential-Algebraic Formulation

The model of the flexible manipulator as considered in the
previous section represents a two link pined chain, so we
introduce a constraint equation to express the perpendicularity
between the rigid base position, and the slope of the flexible
arm’s attachment:

f(q) =
[
∂rp

∂x

]

x=0

+
1

‖r0‖
∂r0

∂θ6
= 0 (18)

Gathering equations 6, 7 and 8 together with 18 becomes the
differential-algebraic system shown below:

q̇ = z (19)

M(q)ż = h(q, z)− F T (q)λ1 (20)

0 = f(q) (21)

where M(q) is the “mass” matrix,F (q) = ∂f/∂q,
q = {θ6, θ, q1, . . . , qn}T , z = {θ̇6, θ̇, q̇1, . . . , q̇n}T and λ1

is the Lagrange multiplier.

Integrating numerically the equations 19, 20 and 21 the error
in satisfying the constraint grows with time. For this reason
the Gear, Gupta & Leimkuhler [11] formulation is used, that
involves adding the constraint 18 in velocity form, therefore
introducing an additional Lagrange multiplierλ2 in equation
19, and for symmetry multiplying it byM(q), so that the
whole system becomes:

M(q)q̇ = M(q)z − F T (q)λ2 (22)

M(q)ż = h(q, z)− F T (q)λ1 (23)

0 = f(q) (24)

0 = F (q)z (25)

this formulation keeps the constraint error along the inte-
gration within reasonable limits. Theλ1 term in equation 23,
calculates the necessary torque at the fixed end of the arm
to satisfy the constraint 24, while theλ2 term in equation
22, corrects the velocity to maintain the constraint error at
minimum.

II-D. Pneumatic Modelling

The manipulator is driven by a single-rod pneumatic cylin-
der, equipped with brake cushions to limit the speed of the
piston, that could damage itself when it bumps the cylinder
extremities. The pneumatic modelling comprises the flow
model through the control valve, and the pneumatic pressure
model within the cylinder chambers. Our analysis is similar
to the one proposed by [12] and [13], but we extended it
to model the behavior of the brake cushioned actuator. The

Fig. 2. Pneumatic actuator with cushion chambers

reader is referred to [14] for the details on intermediate steps
of derivation. Throughout the pneumatic analysis the following
assumptions are used:

A1 Gas is ideal.
A2 Gas density is uniform in the chambers.
A3 Flow in the control valves is isentropic.
A4 Gas in the chambers are isothermal processes.

II-D.1. Flow dynamics through the control valve:The
mass flow rateṁ can be described as a function of the valve
openingAt, and the state properties of the gas. A converging
nozzle is a good model for the valve. From the continuity
equation:

ṁ = ρtAtvt (26)

whereρt andvt are the density and velocity of the gas in the
valve’s throat. The mass flow rate can be obtained, depending
on the values of the inlet valve pressurep0, and outlet valve
pressurep1:

ṁ = Cdγ

√
k

RT0
p0At (27)

γ =

√
2

k − 1

(
pt

p0

) 1+k
2k

[(
pt

p0

) 1−k
k

− 1

] 1
2

(28)

wherek andR are the ratio of specific heatscp/cv, and the
gas constant respectively,T0 is the inlet temperature,pt is
the throat pressure, andCd is the discharge coefficient.

The flow pattern in the valve depends on the values of
the pressuresp0 and p1. For (1 ≥ p1

p0
≥ 0,528) the flow

is described by equation 28, it varies fromγ = 0 where the
actuator’s piston does not move and there is no flow through
the valve, toγ = 0,5787 where the flow reaches its critical
regime. At this point, the velocity of the gas in the throat
is equal to the speed of sound calculated at the throat, and
would not get larger even if the pressure difference increases,
therefore further reducing the outlet pressurep1 will not affect
the flowing state at the throat, in this regime the pressure of
the jet leaving the throatpt is greater than the outlet pressure
p1.

II-D.2. Dynamic relationship within the actuator cham-
bers: The pneumatic actuator is a double-acting linear air
cylinder as shown in figure 2. Considering a control volume
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that comprises one chamber of the cylinder, the first law of
thermodynamics can be written as:

Q̇ + ṁ

(
h +

v2

2

)
=

∂E

∂t
+ Ẇ (29)

where Q̇ is the heat rate to the control volume and is
considered small, the energy of the mass flow rateṁ, is
given by the enthalpyh of the gas stream through the frontier
of the control volume, and its kinetic energy,∂E/∂t is the
rate of change of energy of the control volume, andẆ is the
work rate done on the actuator’s piston.

The energy of the mass flow ratėm, can be associated with
the stagnation enthalpy:

h0 = cpT0 =
(

h +
v2

2

)
(30)

The rate of change of energy of the control volume, is mainly
given by the rate of change of its internal energy :

∂E

∂t
=

∂U

∂t
=

cv

R

(
ṗV + pV̇

)
(31)

wherep andV are the pressure and volume inside the chamber.
The work rate done by the gas is:

Ẇ = pV̇ (32)

Taking the origin(X = 0) to be the far left end of the cylinder,
and the piston stroke length as L (see figure 2), the chamber
volumes are:

V1 = Ap(X + ∆) (33)

V2 = (Ap −Ar)(L−X + ∆) (34)

whereV1 andV2 are the chamber volumes at the piston and
rod sides respectively,Ap and Ar are the piston areas at the
“piston” and “rod” sides respectively and∆ is an equivalent
extra length of the cylinder to account for the residual volume
generated by the connecting tubes and components.

Substituting equations 30, 31, 32, 33 and 34 into equation
29, and simplifying terms, results the next two equations for
the chambers at each side of the piston:

ṁ1 =
Ap

kRT0
ṗ1(X + ∆) +

Ap

RT0
p1Ẋ (35)

ṁ2 =
Ap −Ar

kRT0
ṗ2(L−X + ∆)− Ap −Ar

RT0
p2Ẋ (36)

Depending on the piston position, the rate of change of
pressure inside the cylinder chambers, including the cushions
as shown in figure 2, can be calculated from equations 35
and 36:

If 0 ≤ X ≤ Lalp then

ṗ1a =
kRT0

Aap

(
X + ∆Ap

Aap

)
[
ṁ1a − ṁ1c − Aap

RT0
p1aẊ

]
(37)

ṗ1 =
kRT0

(Ap −Aap)X

[
ṁ1c − Ap −Aap

RT0
p1Ẋ

]
(38)
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Fig. 3. Piston friction force as a function of relative velocity

If Lalp < X ≤ L then

ṗ1a =
kRT0

Ap(X + ∆)

[
ṁ1a − Ap

RT0
p1aẊ

]
(39)

ṗ1 =
kRT0

Ap(X + ∆)

[
ṁ1c − Ap

RT0
p1Ẋ

]
(40)

If 0 ≤ X < (L− Lalv) then

ṗ2 =
kRT0

(Ap −Ar)(L−X + ∆)[
ṁ2c +

Ap −Ar

RT0
p2Ẋ

]
(41)

ṗ2a =
kRT0

(Ap −Ar)(L−X + ∆)[
ṁ2a +

Ap −Ar

RT0
p2aẊ

]
(42)

If (L− Lalv) ≤ X ≤ L then

ṗ2 =
kRT0

(Ap −Ar)(L−X)

[
ṁ2c +

Ap −Ar

RT0
p2Ẋ

]
(43)

ṗ2a =
kRT0

L−X + ∆Ap

Aav−Av

[
ṁ2a − ṁ2c

Aav −Ar
+

p2aẊ

RT0

]
(44)

the set of equations from 37 to 44 describe the pressure
variation within the actuator chambers.

II-D.3. Friction Forces Model: The friction effect on the
seals of the actuator piston is important and should be taken
in account. The model proposed is a variation of the friction
curve approximated by a smooth function [15]:

Fdv = KvẊ + Kcsgn(Ẋ) +
αsgn(Ẋ) + Ks( 2

π )tan−1(βẊ)

1 + δ|Ẋ|
(45)

equation 45 gathers the effects of static frictionKs, Stribeck
effect given by the last term of equation 45, Coulomb friction
Kc and viscous frictionKv.
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Fig. 4. Experimental arrangement of the flexible manipulator

Figure 3 shows values of the total friction force
Fdv depending on the relative piston velocitẏX for
Kv = 250N − s/m, Kc = 2N y Ks = 30N . The form
coefficients values areα = 1, β = 103 andδ = 10.

The force delivered by the cylinder rod, depends on the
pressure difference between piston sides, and the the total
friction force:

Fa = p1Ap − p2(Ap −Ar)− Fdv (46)

II-E. Driving Mechanism Dynamics

The manipulator arm is air pressure driven, by means of a
kinematic chain formed by the pneumatic cylinder, as a slider-
crank mechanism pinned to a four bar mechanism, as shown
in figure 4. The dynamic description of the driving mechanism
results from the Newton-Euler formulation:

d
dt

pi = F i

d
dt

HGi = MGi i = 2, 3, . . . , 6 (47)

wherepi and HGi are for the linki its linear and angular
momentum respectively,F i and MGi are the sum of forces
and moments acting over the linki. The usage of 47 requires
the previous position and velocity analysis of the whole mech-
anism, for this purpose, the Professor F. H. Raven vectorial
approach is used as described in [16]. To solve 47, the input
variable is 46 and the output variables are the contact forces
between links, and their accelerations that can be written as
functions of the piston acceleration̈X.

III. M ODEL VALIDATION

In order to ascertain the validity of the model response, it
is necessary to compare it with experimental data, therefore a
test prototype was built and instrumented.
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Fig. 5. Vibration as measured with an accelerometer and strain gages

III-A. Physical description of the Prototype

The flexible arm is a27mm PVC pipe,1,5m long, attached
to a rigid base. The arm base is linked to the pneumatic
cylinder, by means of a rigid four bar mechanism as shown
in figure 4.

The actuator is a double action cylinder,64mm in diameter
and 102mm stroke. The air flow is regulated by two free
return needle valves and the air direction is controlled with
a three position, closed center directional valve, the timed
opening and closing sequence of this valve is preprogrammed
in LabView, where several key variables are also recorded.

The instrumentation considered to measure the prototype
response is as follows: pressure sensors for each of the two
cylinder ports, a load cell attached to the piston rod, and a
potentiometer to record the flexible arm base position. The
arm vibration is measured, with an accelerometer attached to
the free end of the flexible arm, and also using eight pairs of
strain gages glued along the arm.

III-B. Generalized coordinates identification

The elastic displacement profile of the flexible arm is
described by equation 2, therefore the flexure stretch of a point
away from the beam axis iss = hdv/dx, where h is the
perpendicular distance from the neutral axis. The strain in the
x direction is:

ε = h
d2v

dx2
=

n∑
r=1

ψ”r(x)qr(t) (48)

From data collected with the strain gages and equation
48, the identification of the generalized coordinates was
accomplished, and the vibration of the arms free end
modelled using equation 2. This vibration is depicted
using continuous line and compared with the accelerometer
measurements in dashed lines in figure 5.
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Fig. 6. Flexible arm base position

III-C. Simulation results

The solution of the differential equations was implemented
in MatLAB, considering as initial conditions the system at
rest in a position half way the pneumatic piston stroke, and
with such pressures in the actuator chambers that maintain
the system at rest.

The position of the base of the flexible arm, during
the evolution of the simulation is shown in figure 6, as a
continuous line, and the experimental results are represented
as a dashed line. The motion considered is alternative,
initiated extending the cylinder rod, and considering periods
at rest between movements.

The alternative motion of the mechanism, is originated
by the opening and closing of the control valve, that
communicates the cylinder chambers with the0,31MPa abs.
pressure supply and with the atmosphere as necessary. The
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Fig. 7. Cylinder ports pressure
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Fig. 8. Piston rod force

pressures calculated during the simulation for the cylinder
ports, are depicted in figure 7 as continuous lines, and the
experimental data as dashed lines.

The actuator output, is the force that moves the manipulator
arm by means of the driving mechanism, the shape of this
force will have a direct effect, in the vibration response
of the flexible arm. The piston rod force obtained in the
simulation, is shown in figure 8 as a continuous line, and the
experimental data as a dashed line.

The flexible arm free end vibration, was approximated using
four assumed modes, and its simulation results are shown in
figure 9 as a continuous line, the dashed line represents the
curve obtained from the strain gage measurements.
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Fig. 9. Flexible arm free end vibration
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IV. CONCLUSION

The system variables chosen to be monitored, were
those considered to be more significant to the model
performance. The arm base position gives at first glance, a
good understanding of the manipulator intended movement.
The cylinder pressures provides, the necessary energy to
produce the motion. The actuator force is the intermediate
variable, between the cylinder thermodynamic model and the
flexible arm mechanical model. And the flexible arm free end
vibration is the output variable.

For the purpose of this work, it is important to have in
hand experimental data to compare the simulation results,
and provide some guidelines to improve the modelling.
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