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Abstract: - In this work the design of a neuro PD control with gravity compensation is shown for the free gait
generation on a six-legged robot. This kind of control does auto tuning on PD parameters, with the aid of
neural networks, which use as input variables past and present error. A neural network is proposed, which
permits a soft computing, so that it is possible to be accomplished in real time.
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1 Introduction

The control system design in a walking robot plays
an important role in it’s ability to walk efficiently.
Several problems have to be solved to obtain an
automatic locomotion behavior. Some of these
problems are the stability control during the walking
process, the working space restriction to avoid
crashing impacts between legs or body, the force
distribution in the robot and the adaptable way to
walk on different terrains. At this point in time,
several ways exist to facilitate the adaptability of
walking locomotion but more research is needed.

The dynamic control design of the robot is
responsible for assuring stable gait generation,
which in the case of a walking robot, each of the
legs will need to generate gait.

El PID is the most known and applied control in the
different branches of technology, in this case one
uses this type of control so that each of the legs on a
walking robot follows a defined trajectory.

The configuration of a walking hexapod robot is
presented in Fig 1, as it was developed in [1], this
robot has the morphology of an ant, as one can see
in the figure there are different relationships
between each of the pairs of legs distributed around
the body of the robot.

Fig. 1. Configuration of the walking robot

The development of this type of system requires the
joint application of three areas of engineering,
mechanical, electronic and computer systems, which
together make a mechatronic system. This control
design applies this kind of system.

2 Problem Formulation

Various types of parameter PID tuning exist, which
are presented in classic literature such as in some of
the works published [2][3].

The determination of these parameters depends
mainly on the robot characteristics as well as some
external elements, like surface irregularities.

For mechanical system application like the other
systems, one needs the auto tuning in the control
parameters; in this case it is realized in the moving
leg of the walking machine, which permits the
successful gait trajectories.

On the other hand one is looking for the neural
systems to help with the control performance
considering that the control system can present non-
linear characteristics of the mechanical systems.
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3 Trajectory for the Leg

The primary objective for the control
proposed in this paper is to follow a trajectory
for a leg step. This trajectory 1s parametrically
designed, and it can change according to the
type of land or application of the robot. Fig 2
shows a parabolic type trajectory motion for the
leg, which is typical of the movement of some
animals [4][5]. In the simulation study,
however, the parabolic trajectory was used due
to its simplicity. In this case the equations for
the three degrees of freedom in the leg are
described by the next equations:

Fig. 2. Parabolic trajectory motion.

0 =dy— Ay(cosE-1)
0, =dp—AB(cos&—1) (1)
03 =dy — Ay(cosE—1)

where dy, df, dy are the initial values of angles
01,082,063, respectively. Those values fix the initial
position of the leg in the space. Variable Ay defines
the step length and AP, Ay, define the robot leg
height; & is an angle which takes values between 0
and .

Equation 2 shows the values considering the
dimensions that are required in the generation of
steps for the walking robot of six legs.

dy=70 Ay=20
dp=4 Ap=15 (2)
dy =310 Ayx=10

4 Dynamic Model of the Leg

The design of the control law is based in the
dynamic model of the robot’s leg. Each leg of the
robot consists of a basic configuration of three
degrees of freedom as is shown in Fig. 3. The
variables and parameters that conform the
mathematical model of the robot are the following:
01, 6,, 05 are the relative angles between the links,
which are independent; 1; and l; are the effective
longitude for the link 2 and link 3; ml, m,, m; and
J1, J2 and I3 are the mass and the inertia for link 1,
link2 and link3, respectively.

Fig. 3. Parameter and variables used in the leg
modelling.

Each link is considered as a rigid body. From an
energy point of view, the Lagrange technique is used
to obtain the dynamic model for the legs. Equation 1
is a fundamental relationship between internal and
external energy. K represents the kinetic energy of
the mechanical system and U represents the potential
energy.

L=K-U 3)

Equation 3 is the fundamental relationship to
determine the external torque for each generalized
coordinate.

— | -=—=1
di| 26, | 0, @
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The mathematical dynamic model for the legs is
expressed by Equation 4, the system can be
reasonably represented as a second order differential
equation.
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The general equation for this kind of systems can be
seen in Equation 6, which represents another form as
seen in Equation 5.

D(g)g+clqg,g)+glg)+b(g) =7 (6)

where D(q) is the matrix of inertia, c(q.qg ) the
Coriolis and centrifugal terms, g(q) the gravity
effect and b(q ) the effect of the friction.

Equation 7 is the representation of the variable of
state of Equation 6.

g=v
v=D"(q)[r-g(g)—clqg,v)=b(v)] 7
y=wlg)

5 Dynamic Control of the Leg

Once the dynamic model of the leg is constructed, a
simulation study can be accomplished that will
illustrate the behavior of the system. Attention is
focused to make the study considering the system
torques of each joint as the inputs and the joint
angles and velocities as the outputs of the model. In
order to describe the position of each leg in a
cartesian coordinate frame, a cinematic model to
transform the robot positions to cartesian positions
(X.Y.7Z) was used. On the other hand, a control law
was designed, which uses the angle joints errors to
calculate the torques which must be applied to each
joint actuator, and then evaluate the dynamic model
to get new angles for the joints. Fig. 3 shows the
block diagram of the control law, this scheme is well
known as control with gravity compensation which
1s represented by C(g) [6][7].

7= Kpe+ Kvé+g(q) (8)

Based on Equation 7, in order to consider the control
systems in close loop, a change of variable (the z
instead of q) is made, where z is defined
z=q— 0, which shows the difference between the

real value and the desired value [2][8]. In Equation 9
the states are rewrilten with the variable changes.
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Fig. 2. Block diagram of the control law.
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V= D'l{z+9)[Kp+ Kv—e(z+8, 1-')—:‘)(_1:)]

In order to know about the stability of the
mechanical system, the Lyapunov criterion stability
is applied [9][10]. In order to apply the criterion, the
function V (z,v) in Equation 10 is needed, as
described in [8].

Ty T ~ ,
V(ZJ:): Z K<,+! ’:)({,‘I'G)l (10]

The control algorithm used to move a leg in the
simulations was a PD control law, which requires, as
it is known, to tune two constants by each degree of
freedom, proportional gain K and the derivative gain
Kd. In attempt to control the position and velocity
of each joint, tuning a total of 12 variables is a must.

K1 |K2 K3 | Kdl Kd2 | Kd3
Value c.06|0.09|0.2|0C.008|0.6]0C.01
Table 1 PD Control Constants for Position Control

Kl |K2 |K3 [Kdl Kd2 |Kd3
Value 0.04 [0.9|0.17 [0.001 |0.02 |0.02
Table 2 PD Control Constants for Velocity Control

Table 1 and table 2 shows the values obtained by
trial and error using simulation. These PD Control
constants are used to follow trajectories generated
for the Equation 1, and its derivates.

The final angle results arrive at the desired
trajectories even when some oscillations are
observed, especially in the third joint. However, the
tracking of velocity trajectories is not very
successfully achieved; in fact, big deviations of
desired trajectories can be observed.

To improve the performance of the PD controller,
adding an adaptive component which can cope with
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the external disturbances, the multivariable essence
and the strong nenlinearities of the robot, a neural
component is preposed which can correct in real
time the values of the proportional and derivative
gain coefficients. In the next secticn, the derivation
of the neural correcticn algorithm will be presented.

6 Neuro-PD Algorithm

In Fig. 4, a diagram of the neurc-PD controller is
presented. For the sake of clarity, only two nefs are
depicted.

The neural nefs are of the perceptron tvpe, with a
hidden layer, which has conly a neuron with a
sigmoid activaticn function. The output layer is
linear and has also a single neuron. The cutputs of
the nets are respectively AK; and AK,, that is the
increments of proportional and derivative gains.

The inputs of all the neuronal networks are the
output errors and their first differences, that is:

x(U=ly (0 aey 0] (an
where
ep ()= (1)~ 6(1) (12)

represent the errors in the joints angles.

The neural networks are trained by means of special
backpropagation algorithm which will be develeped
in detail for the case of proportional gain changes.
The derivative censtants modifications can be
obtained in a similar way.

The cobjective function that must be minimized by
means of the neural nets is the quadratic function:

BO=2Y 30 10y

Bl

.

ed
0,

Fig. 3 Neurc PD conirol siructure.

The joint angles 8(t} are related with the input
torques by means of a supposed unknown nen-linear
dynamic model that we denocte by:

8(0 = R(x(t) (13}
The torqueses calculated by the controller are:
r(t):kpep {t+k,e,(t) (143
The proportional gain will change as follows:

kP =kp+Akp (15}

Ak, =vh (16}

where v is the weight coefficient which connects the
hidden with the cutput neuron and h is the cutput of
the hidden neuron.

The inputs to the neurons of the hidden layer are
8= Wlep(t)+ szep(t) (a7
The activation function of the hidden neurcn is:

h= 1
1+e

(18}

s

To apply the back propagation algorithm, it is
necessary to calculate the gradient of the functicn E,
with respect to the coefficient v and w, that is:

OE(1)
ES
OE(1)
aw

VE() = (19)

i

The partial derivatives which appear in equation 19
can be calculated by means of the chain rule of
derivations, that is:
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After the substitution of the partial derivatives which
appear in equations 20 and 21, we arrive to:

oE 0
p 2
=—e, ()" h— 22
o, e, (V) ™ (22)
ok, ,00
—L=—¢ (1)) —vh(1-h)x, 23
o e, () afv,( )X; (23)

As can be seen, in 22 and 23 it appears the partial

derivati veg—e, which can not be evaluated under the
T

assumption that the robot model is not precisely
known. Even in the case that a precise model was
built, the evaluation would be very time consuming
for real time realization of this algorithm. As it was
shown in [11] [12], under some not very restrictive
conditions, that partial derivative, also known as the
Jacobian or equivalent gain of the process under
control, can be substituted by its sign. Then,
equations 22 and 23 can be simplified to:

JE
_p:_ep(t)zh sign(R) (24)
v,
oE
a—ﬂ: =-e, (1)*sign(R)vh(1- h)x; (25)

The function sign (R) is evaluated as +1 or -1
depending on the sign of the relationship between
the angular position and the applied torque which
can be considered, for the case of the robot, as
always positive.

Equations 24 and 25 can be used to derive the
adaptation equations for the weight coefficients of
the neural net, w and v, using the steepest descent
method as follows:

vl(t+l}=v|(t)+nep(t)2hsign(R) (24)
wi(t+1)=w (1) +ne, (17 sign(R) vih(1 —h)x ;(25)

The adaptive equations 24 and 25 can be calculated
easily in real time and serve to adapt the values of
proportional coefficients Kp, using equations 15 and
16. A similar derivation can be used to find the
adaptation equations for derivative coefficients K, .

The neural adaptive model can be used in a
permanent way, which achieves successful
improvements of the control behavior.

7 Results

In tables IV and V the proportional and derivative
gains are shown that were obtained after several
simulations of the neuro PD control algorithm,
parting from the values, which appear in Tables 1
and 2

Kl [K2 K3 Kdl |Kd2 |Kd3
Value |©.071 [0.301 |0.181 |06.01 |0.011 |0.007

‘Table 3 PD Control Constants for Position Control
Obtained with Neuro Adaptation

K1 K2 K3 Kdl |[Kd2 |[Kd3
Value | 0-053 | L.702 [0.183 [0.014 | 0.022 |0.023

Table 4 PD Control Constants for Velocity Control
Obtained with Neuro Adaptation

The results of the gait generation, obtained by PD
and neuro PD control can be observed in the graphic
of Fig. 5.
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Fig 5 Result of the gait generation in the different
controls

In Fig 6 the result is shown of the control
implementation on simulation program designed in
C++. El prototype is shown in Fig 7.
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Fig. 6 Simulation of gait generation

Fig.7 Prototype for gait generation.

8 Conclusion

The dynamic model described for a leg of a six-
legged robot is a highly nonlinear system, obviously
this complicates the design of the control system;
however a PD control with gravity compensation
was designed with satisfactory results. A series of
preliminary  trajectories were evaluated by
simulation, considering a parametric mathematical
model to facilitate the walking adaptation for the leg.
the coefficients of the tables 1 and 2 can be used to
help design a walking generator algorithm. this
research is continued by considering an intelligent
algorithm which includes six simple neural nets for
each leg which permit the adaptation of PD
coefficients and improve the performance of the
robot. In the future, it is necessary also to research
about the flexibility of the working space area for
the legs which cause the mobility of the robot to be
increased substantially. The determination of the
mobility for the robot and the stability evaluation is
possible by using a 3D graphic simulator before
being proven in the prototype .

Appendix

Coefficients a; are the terms for the inertia

2 2 l l 2 )
ayy =1 + m3l5cos°@; + ;lnilzlic{\sﬂ:cnsﬁ-j }Zm_gljcns‘.‘?_‘
1
as =l +—lams +l3m;s
l 33
1
a3 =Em_§|3 13(senf; senfly +cost cosdy)

1
ap = myls 15 (sends sendy +cosd cosdy)

1
a3y ==lymy+1]14
Ry 3

The Coriolis and centrifugal terms are defined by by
and Cij.

1.2 1

by = —;'5("1250“292 +1n3&u|1263J—Zln;‘lgl;‘cusb‘]scnﬁg
1

bay = Sy 1215 (sendh cos#y - costl sendy)
1 1

bay =;ITI_‘|3(|2{.'HS§2.‘~'U]19_\ -;S{!]’IE&_\

1
bsys L 1515 (send senéy +cosf,cosdly )

2 I I 2
¢ =-(m3l35en26, +;|n_1|2 I35enf;cosd; +Z my l5sen26, )
1 1 2 an

= -(? mylylycosé,send; + 5 msl3sen2éy)

1
€31 = ?m\;lz l3(cos @y senfy -sendycosdy)

1
€23 =My I3 13(cos @558 -senbscos ;)

1
€33 =mzl,l5(send;cosb; - cos By sends)

Coefficients f; are the terms for the gravity effect of
the masses

fin= l.’, cosé,
2 =74 2
[y =1cos8,

fu= %!, cos 8,
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